#' Get the open and closed compartment calls based on sign of singular values
#'
#' @param gr Input GRanges with associated mcols that represent singular values
#' @param cutoff Threshold to define open and closed states
#' @param assay The type of assay we are working with
#'
#' @return A vector of binary/categorical compartment states
#' @import SummarizedExperiment
#' @export
#'
#' @examples
#'
#' dummy <- matrix(rnorm(10000), ncol=25)
#' sing_vec <- getSVD(dummy, k = 1, sing.vec = "right")
#'
extractOpenClosed <- function(gr, cutoff = 0,
assay = c("rna", "atac", "array")){
#check for input to be GRanges
if (!is(gr, "GRanges")) stop("Input needs to be a GRanges.")
if (!("pc" %in% names(mcols(gr)))) stop("Need to have an mcols column be named 'pc'.")
assay <- match.arg(assay)
if (assay %in% c("atac", "rna")) return(ifelse(gr$pc < cutoff, "closed", "open"))
if (assay %in% c("array")) return(ifelse(gr$pc < cutoff, "open", "closed"))
}
#' Check if the assay is a SummarizedExperiment
#'
#' @param obj Input object
#'
#' @return Boolean
#' @export
#'
#' @examples
#' data("k562_scrna_chr14", package = "compartmap")
#' checkAssayType(k562_scrna_chr14)
checkAssayType <- function(obj) {
#helper function to check the class of an object
is(obj, "SummarizedExperiment")
}
#' Get the assay names from a SummarizedExperiment object
#'
#' @param se Input SummarizedExperiment object
#'
#' @return The names of the assays
#' @export
#'
#' @examples
#' data("k562_scrna_chr14", package = "compartmap")
#' getAssayNames(k562_scrna_chr14)
getAssayNames <- function(se) {
#helper function to check the assay slot names
names(assays(se))
}
#' Helper function: squeezed logit
#'
#' @param p a vector of values between 0 and 1 inclusive
#' @param sqz the amount by which to 'squeeze', default is .000001
#'
#' @return a vector of values between -Inf and +Inf
#'
#' @examples
#'
#' p <- runif(n=1000)
#' summary(p)
#'
#' sqz <- 1 / (10**6)
#' x <- flogit(p, sqz=sqz)
#' summary(x)
#'
#' all( abs(p - fexpit(x, sqz=sqz)) < sqz )
#' all( abs(p - fexpit(flogit(p, sqz=sqz), sqz=sqz)) < sqz )
#'
#' @export
flogit <- function(p, sqz=0.000001) {
midpt <- 0.5
deflate <- 1 - (sqz * midpt)
if (any(p > 1 | p < 0, na.rm = TRUE)) stop("Values of p outside (0,1) detected.")
squoze <- ((p - midpt) * deflate) + midpt
return( log( squoze / (1 - squoze)) )
}
#' Helper function: expanded expit
#'
#' @param x a vector of values between -Inf and +Inf
#' @param sqz the amount by which we 'squoze', default is .000001
#'
#' @return a vector of values between 0 and 1 inclusive
#'
#' @examples
#'
#' x <- rnorm(n=1000)
#' summary(x)
#'
#' sqz <- 1 / (10**6)
#' p <- fexpit(x, sqz=sqz)
#' summary(p)
#'
#' all( (abs(x - flogit(p)) / x) < sqz )
#' all( abs(x - flogit(fexpit(x))) < sqz )
#'
#' @export
fexpit <- function(x, sqz=0.000001) {
midpt <- .5
squoze <- exp(x)/(1 + exp(x))
inflate <- 1 / (1 - (sqz * midpt))
p <- ((squoze - midpt) * inflate) + midpt
return(p)
}
#' Get the chromosomes from an object
#'
#' @param obj Input SummarizedExperiment object
#'
#' @return A character vector of chromosomes present in an object
#' @import SummarizedExperiment
#'
#' @examples
#' data("k562_scrna_chr14", package = "compartmap")
#' getChrs(k562_scrna_chr14)
#'
#' @export
getChrs <- function(obj) {
#get the chromosomes present in the object
return(unique(as.character(seqnames(obj))))
}
#' Remove bootstrap estimates that failed
#'
#' @param obj Input list object with elements 'pc' and 'gr'
#'
#' @return A filtered list object
#' @export
removeEmptyBoots <- function(obj) {
#remove NAs from a bootstrap list
#this can happen if the correlation between the bins and eigenvector fails
#theoretically we can recover these but need an additional utility to find consensus
na.filt <- unlist(lapply(obj, function(n) ifelse(any(is.na(n)), FALSE, TRUE)))
obj <- obj[na.filt]
return(obj)
}
#' Get the seqlengths of a chromosome
#'
#' The goal for this function is to eliminate the need to lug around
#' large packages when we only want seqlengths for things.
#'
#' @param genome The desired genome to use ("hg19", "hg38", "mm9", "mm10")
#' @param chr What chromosome to extract the seqlengths of
#'
#' @return The seqlengths of a specific chromosome
#' @import GenomicRanges
#'
#' @examples
#' hg19.chr14.seqlengths <- getSeqLengths(genome = "hg19", chr = "chr14")
#'
#' @export
getSeqLengths <- function(genome = c("hg19", "hg38", "mm9", "mm10"),
chr = "chr14") {
#eventually we should support arbitrary genomes
genome <- match.arg(genome)
#check if the genome used exists in what is currently supported, stopping if not
if (!genome %in% c("hg19", "hg38", "mm9", "mm10")) stop("Only human and mouse are supported for the time being.")
#import
genome.gr <- switch(genome,
hg19 = data("hg19.gr", package = "compartmap"),
hg38 = data("hg38.gr", package = "compartmap"),
mm9 = data("mm9.gr", package = "compartmap"),
mm10 = data("mm10.gr", package = "compartmap"))
#make sure that the chromosome specified exists in the seqlevels
if (!chr %in% seqlevels(get(genome.gr))) stop("Desired chromosome is not found in the seqlevels of ", genome)
#get the seqlengths
sl <- seqlengths(get(genome.gr))[chr]
return(sl)
}
#' Get chunked sets of row-wise or column-wise indices of a matrix
#'
#' @name getMatrixBlocks
#'
#' @param mat Input matrix
#' @param chunk.size The size of the chunks to use for coercion
#' @param by.row Whether to chunk in a row-wise fashion
#' @param by.col Whether to chunk in a column-wise fashion
#'
#' @return A set of chunked indices
#'
#' @examples
#' #make a sparse binary matrix
#' library(Matrix)
#' m <- 100
#' n <- 1000
#' mat <- round(matrix(runif(m*n), m, n))
#' mat.sparse <- Matrix(mat, sparse = TRUE)
#'
#' #get row-wise chunks of 10
#' chunks <- getMatrixBlocks(mat.sparse, chunk.size = 10)
#'
#' @export
getMatrixBlocks <- function(mat, chunk.size = 1e5,
by.row = TRUE, by.col = FALSE) {
message("Using chunk size: ", chunk.size)
if (by.row) {
message("Breaking into row chunks.")
return(split(1:nrow(mat), ceiling(seq_along(1:nrow(mat))/chunk.size)))
}
#assumes column-wise chunking
message("Breaking into column chunks.")
return(split(1:ncol(mat), ceiling(seq_along(1:ncol(mat))/chunk.size)))
}
#' Convert a sparse matrix to a dense matrix in a block-wise fashion
#'
#' @name sparseToDenseMatrix
#'
#' @param mat Input sparse matrix
#' @param blockwise Whether to do the coercion in a block-wise manner
#' @param by.row Whether to chunk in a row-wise fashion
#' @param by.col Whether to chunk in a column-wise fashion
#' @param chunk.size The size of the chunks to use for coercion
#' @param parallel Whether to perform the coercion in parallel
#' @param cores The number of cores to use in the parallel coercion
#'
#' @return A dense matrix of the same dimensions as the input
#'
#' @import Matrix
#' @import parallel
#'
#'
#' @examples
#' #make a sparse binary matrix
#' library(Matrix)
#' m <- 100
#' n <- 1000
#' mat <- round(matrix(runif(m*n), m, n))
#' mat.sparse <- Matrix(mat, sparse = TRUE)
#'
#' #coerce back
#' mat.dense <- sparseToDenseMatrix(mat.sparse, chunk.size = 10)
#'
#' #make sure they are the same dimensions
#' dim(mat) == dim(mat.dense)
#'
#' #make sure they are the same numerically
#' all(mat == mat.dense)
#'
#' @export
sparseToDenseMatrix <- function(mat, blockwise = TRUE,
by.row = TRUE, by.col = FALSE,
chunk.size = 1e5, parallel = FALSE,
cores = 2) {
if (isFALSE(blockwise)) return(as(mat, "matrix"))
#do block-wise reconstruction of matrix
chunks <- getMatrixBlocks(mat, chunk.size = chunk.size,
by.row = by.row, by.col = by.col)
if (by.row & parallel) {
return(do.call("rbind", mclapply(chunks, function(r) {
return(as(mat[r,], "matrix"))
}, mc.cores = cores)))
}
if (by.row & !parallel) {
return(do.call("rbind", lapply(chunks, function(r) {
return(as(mat[r,], "matrix"))
})))
}
#assumes column-wise conversion
if (by.col & parallel) {
return(do.call("cbind", mclapply(chunks, function(r) {
return(as(mat[,r], "matrix"))
}, mc.cores = cores)))
}
return(do.call("cbind", lapply(chunks, function(r) {
return(as(mat[,r], "matrix"))
})))
}
#' Import and optionally summarize a bigwig at a given resolution
#'
#' @name importBigWig
#'
#' @param bw Path a bigwig file
#' @param bins Optional set of bins as a GRanges to summarize the bigwig to
#' @param summarize Whether to perform mean summarization
#' @param genome Which genome is the bigwig from ("hg19", "hg38", "mm9", "mm10")
#'
#' @return SummerizedExperiment object with rowRanges corresponding to summarized features
#'
#' @import SummarizedExperiment
#' @import GenomicRanges
#'
#' @export
importBigWig <- function(bw, bins = NULL, summarize = FALSE,
genome = c("hg19", "hg38", "mm9", "mm10")) {
#read in the bigwig
bw.raw <- rtracklayer::import(bw)
#coerce to UCSC style seqlevels
seqlevelsStyle(bw.raw) <- "UCSC"
if (!is.null(bins)) {
seqlevelsStyle(bins) <- "UCSC"
}
#it is now a GRanges object
if (any(is.na(seqlengths(bw.raw)))) stop("Imported bigwig does not have seqlengths")
## only supporting human and mouse for now
if (genome %in% c("hg19", "hg38")) {
species <- "Homo_sapiens"
} else {
species <- "Mus_musculus"
}
bw.sub <- keepStandardChromosomes(bw.raw, species = species, pruning.mode = "coarse")
if (!is.null(bins)) {
bins <- keepSeqlevels(bins, value = seqlevels(bw.sub), pruning.mode = "coarse")
}
if (summarize) {
#make sure it's sorted
bw.sub <- sort(bw.sub)
#this assumes seqlengths exist...
#this also assumes some bins exist
if (is.null(bins)) stop("Specify bins as GRanges with tileGenome")
bw.score <- GenomicRanges::coverage(bw.sub, weight = "score")
bw.bin <- GenomicRanges::binnedAverage(bins, bw.score, "ave_score")
#cast to a SummarizedExperiment to bin them
bw.se <- SummarizedExperiment(assays = SimpleList(counts = as.matrix(mcols(bw.bin)$ave_score)),
rowRanges = granges(bw.bin))
colnames(bw.se) <- as.character(bw)
return(bw.se)
}
return(bw.sub)
}
#' Remove rows with NAs exceeding a threshold
#'
#' @param se Input SummarizedExperiment object
#' @param rowmax The maximum NAs allowed in a row as a fraction
#' @param assay The type of assay we are working with
#'
#' @return A filtered matrix
#' @export
#'
#' @examples
#' data("meth_array_450k_chr14", package = "compartmap")
#' cleanAssayRows(array.data.chr14, assay = "array")
cleanAssayRows <- function(se, rowmax = 0.5,
assay = c("array", "bisulfite")) {
assay <- match.arg(assay)
switch(assay,
array = se[rowMeans(is.na(assays(se)$Beta)) < rowmax,],
bisulfite = se[rowMeans(is.na(assays(se)$counts)) < rowmax,])
}
#' Remove columns/cells/samples with NAs exceeding a threshold
#'
#' @param se Input SummarizedExperiment object
#' @param colmax The maximum number of NAs allowed as a fraction
#' @param assay The type of assay we are working with
#'
#' @return A filtered matrix
#' @export
#'
#' @examples
#' data("meth_array_450k_chr14", package = "compartmap")
#' cleanAssayCols(array.data.chr.14, assay = "array")
cleanAssayCols <- function(se, colmax = 0.8,
assay = c("array", "bisulfite")) {
assay <- match.arg(assay)
switch(assay,
array = se[,colMeans(is.na(assays(se)$Beta)) < colmax],
bisulfite = se[,colMeans(is.na(assays(se)$counts)) < colmax])
}
#' Filter to open sea CpG loci
#'
#' @name filterOpenSea
#'
#' @param obj Input SummarizedExperiment or GRanges object
#' @param genome Which genome to filter
#'
#' @return Filtered to open sea CpG loci
#' @import SummarizedExperiment
#'
#' @examples
#' data("meth_array_450k_chr14", package = "compartmap")
#' opensea <- filterOpenSea(array.data.chr14, genome = "hg19")
#'
#' @export
filterOpenSea <- function(obj, genome = c("hg19", "hg38", "mm10", "mm9"), other = NULL) {
#get the desired open sea loci given the genome
genome <- match.arg(genome)
if (is.null(other)) {
openseas.genome <- switch(genome,
hg19=data("openSeas.hg19", package="compartmap"),
hg38=data("openSeas.hg38", package="compartmap"),
mm10=data("openSeas.mm10", package="compartmap"),
mm9=data("openSeas.mm9", package="compartmap"))
} else {
#check if it's a GRanges flavored object
if (!is(other, "GRanges")) stop("The 'other' input needs to be a GRanges of open sea regions")
openseas.genome <- other
}
#Subset by overlaps
message("Filtering to open sea CpG loci...")
#subset to just CpG loci if CpH or rs probes still exist
obj <- obj[grep("cg", rownames(obj)),]
obj.openseas <- subsetByOverlaps(obj, get(openseas.genome))
return(obj.openseas)
}
#' Gather open sea CpG from a GRanges of CpG islands
#'
#' @description This function accepts a GRanges input of CpG islands that can
#' be derived from UCSC table browser and rtracklayer::import(yourbed.bed)
#'
#' @name filterOpenSea
#'
#' @param gr Input GRanges of CpG islands
#'
#' @return GRanges object that can be used with filterOpenSea()
#' @import rtracklayer
#' @import GenomicRanges
#' @export
#'
#' @examples
#' cpgi <- rtracklayer::import(system.file("inst/extdata/mm10_cpgi.bed", package = "compartmap"))
#' opensea_cpg <- getOpenSeas(cpgi)
#'
getOpenSeas <- function(gr) {
resorts <- trim(resize(gr, width(gr) + 8000, fix = "center"))
openSeas <- subset(gaps(resorts), strand == "*")
return(openSeas)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.