nc.score <- function (x, y = NULL, use = "everything",nbins=NULL,bin.cutoffs=NULL)
{
method = "kendall"
C_cor = get("C_cor",asNamespace("stats"))
na.method <- pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
"everything", "na.or.complete"))
processed_input <- preprocess_nc_score_input(
x,
y,
na.method,
nbins,
bin.cutoffs
)
x <- processed_input$x
y <- processed_input$y
nbins <- processed_input$nbins
bin.cutoffs <- processed_input$bin.cutoffs
if (na.method %in% c(2L, 5L)) {
if (is.null(y)) {
.Call(C_cor, Bin(na.omit(x),nbins,bin.cutoffs), NULL, na.method, method ==
"kendall")
}
else {
nas <- attr(na.omit(cbind(x, y)), "na.action")
dropNA <- function(x, nas) {
if (length(nas)) {
if (is.matrix(x))
x[-nas, , drop = FALSE]
else x[-nas]
}
else x
}
.Call(C_cor,
Bin(dropNA(x, nas),nbins,bin.cutoffs),
Bin(dropNA(y, nas),nbins,bin.cutoffs),
na.method,
method == "kendall")
}
}
else if (na.method != 3L) {
x <- Bin(x,nbins,bin.cutoffs)
if (!is.null(y))
y <- Bin(y,nbins,bin.cutoffs)
.Call(C_cor, x, y, na.method, method == "kendall")
}
else {
if (is.null(y)) {
ncy <- ncx <- ncol(x)
if (ncx == 0)
stop("'x' is empty")
r <- matrix(0, nrow = ncx, ncol = ncy)
for (i in seq_len(ncx)) {
for (j in seq_len(i)) {
x2 <- x[, i]
y2 <- x[, j]
ok <- complete.cases(x2, y2)
x2 <- Bin(x2[ok],nbins,bin.cutoffs)
y2 <- Bin(y2[ok],nbins,bin.cutoffs)
r[i, j] <- if (any(ok))
.Call(C_cor, x2, y2, 1L, method == "kendall")
else NA
}
}
r <- r + t(r) - diag(diag(r))
rownames(r) <- colnames(x)
colnames(r) <- colnames(x)
r
}
else {
if (length(x) == 0L || length(y) == 0L)
stop("both 'x' and 'y' must be non-empty")
matrix_result <- is.matrix(x) || is.matrix(y)
if (!is.matrix(x))
x <- matrix(x, ncol = 1L)
if (!is.matrix(y))
y <- matrix(y, ncol = 1L)
ncx <- ncol(x)
ncy <- ncol(y)
r <- matrix(0, nrow = ncx, ncol = ncy)
for (i in seq_len(ncx)) {
for (j in seq_len(ncy)) {
x2 <- x[, i]
y2 <- y[, j]
ok <- complete.cases(x2, y2)
x2 <- Bin(x2[ok],nbins,bin.cutoffs)
y2 <- Bin(y2[ok],nbins,bin.cutoffs)
r[i, j] <- ifelse(
(any(ok)),
.Call(C_cor, x2, y2, 1L, method == "kendall"),
NA )
}
}
rownames(r) <- colnames(x)
colnames(r) <- colnames(y)
if (matrix_result){
r
} else drop(r)
}
}
}
## nc.score.wrapper <-
## function(
## #*************************************************************************************
## #* nc.score *
## #*************************************************************************************
## x, #First input
## y=NULL, #Second input
## use = "everything", # What to do with missing values
## nbins=NULL, #Number of Input Bins
## bin.cutoffs=NULL, #Cutoff values for the bins
## verbose = FALSE, #Request for verbose output?
## min.abundance=0.0001, #Minimum Abundance
## min.samples=0.1) #Minimum Samples
## {
## #*************************************************************************************
## #* NC_Score *
## #*************************************************************************************
## na.method <- pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
## "everything", "na.or.complete"))
## processed_input <- preprocess_nc_score_input(
## x,
## y,
## na.method,
## nbins,
## bin.cutoffs
## )
## x <- processed_input$x
## y <- processed_input$y
## nbins <- processed_input$nbins
## bin.cutoffs <- processed_input$bin.cutoffs
## CA <- list() #Set the common area
## CA$x <- x
## CA$y <- y
## CA$use <- use
## CA$nbins <- nbins
## CA$bin.cutoffs <- bin.cutoffs
## CA$verbose <- verbose
## CA <- process_wraper_input(CA,min.abundance,min.samples)
## CA$nc.score.result <- nc.score(
## CA$x.filtered,
## CA$y.filtered,
## CA$use,
## CA$nbins,
## CA$bin.cutoffs
## )
## if(CA$verbose){
## return(CA)
## } else {
## return(CA$nc.score.result)
## }
## }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.