R/dimensionality_reduction.R

Defines functions plot_dimred run_umap run_tsne

Documented in plot_dimred run_tsne run_umap

##################################################################
## Functions to do dimensionality reduction on the MOFA factors ##
##################################################################

#' @title Run t-SNE on the MOFA factors
#' @name run_tsne
#' @param object a trained \code{\link{MOFA}} object.
#' @param factors character vector with the factor names, or numeric vector with the indices of the factors to use, or "all" to use all factors (default).
#' @param groups character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use all groups (default).
#' @param ... arguments passed to \code{\link{Rtsne}}
#' @details This function calls \code{\link[Rtsne]{Rtsne}} to calculate a TSNE representation from the MOFA factors.
#' Subsequently, you can plot the TSNE representation with \code{\link{plot_dimred}} or fetch the coordinates using \code{plot_dimred(..., method="TSNE", return_data=TRUE)}. 
#' Remember to use set.seed before the function call to get reproducible results. 
#' @return Returns a \code{\link{MOFA}} object with the \code{MOFAobject@dim_red} slot filled with the t-SNE output
#' @importFrom Rtsne Rtsne
#' @export
#' @examples
#' # Using an existing trained model on simulated data
#' file <- system.file("extdata", "model.hdf5", package = "MOFA2")
#' model <- load_model(file)
#' 
#' # Run
#' \dontrun{ model <- run_tsne(model, perplexity = 15) }
#' 
#' # Plot
#' \dontrun{ model <- plot_dimred(model, method="TSNE") }
#' 
#' # Fetch data
#' \dontrun{ tsne.df <- plot_dimred(model, method="TSNE", return_data=TRUE) }
#' 
run_tsne <- function(object, factors = "all", groups = "all", ...) {
  
  # Sanity checks
  if (!is(object, "MOFA")) stop("'object' has to be an instance of MOFA")
  
  # Get factor values
  Z <- get_factors(object, factors=factors, groups=groups)
  
  # Concatenate groups
  Z <- do.call(rbind, Z)
  
  # Replace missing values by zero
  Z[is.na(Z)] <- 0
  
  # Run t-SNE
  tsne_embedding <- Rtsne(Z, check_duplicates = FALSE, pca = FALSE, ...)

  # Add sample names and enumerate latent dimensions (e.g. TSNE1 and TSNE2)
  object@dim_red$TSNE <- data.frame(rownames(Z), tsne_embedding$Y)
  colnames(object@dim_red$TSNE) <- c("sample", paste0("TSNE", 1:ncol(tsne_embedding$Y)))
  
  return(object)
  
}



#' @title Run UMAP on the MOFA factors
#' @name run_umap
#' @param object a trained \code{\link{MOFA}} object.
#' @param factors character vector with the factor names, or numeric vector with the indices of the factors to use, or "all" to use all factors (default).
#' @param groups character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use all groups (default).
#' @param n_neighbors number of neighboring points used in local approximations of manifold structure. Larger values will result in more global structure being preserved at the loss of detailed local structure. In general this parameter should often be in the range 5 to 50.
#' @param min_dist  This controls how tightly the embedding is allowed compress points together. Larger values ensure embedded points are moreevenly distributed, while smaller values allow the algorithm to optimise more accurately with regard to local structure. Sensible values are in the range 0.01 to 0.5
#' @param metric choice of metric used to measure distance in the input space
#' @param ... arguments passed to \code{\link[uwot]{umap}}
#' @details This function calls \code{\link[uwot]{umap}} to calculate a UMAP representation from the MOFA factors
#' For details on the hyperparameters of UMAP see the documentation of \code{\link[uwot]{umap}}.
#' Subsequently, you can plot the UMAP representation with \code{\link{plot_dimred}} or fetch the coordinates using \code{plot_dimred(..., method="UMAP", return_data=TRUE)}. 
#' Remember to use set.seed before the function call to get reproducible results. 
#' @return Returns a \code{\link{MOFA}} object with the \code{MOFAobject@dim_red} slot filled with the UMAP output
#' @importFrom uwot umap
#' @export
#' @examples
#' # Using an existing trained model on simulated data
#' file <- system.file("extdata", "model.hdf5", package = "MOFA2")
#' model <- load_model(file)
#' 
#' # Change hyperparameters passed to umap
#' \dontrun{ model <- run_umap(model, min_dist = 0.01, n_neighbors = 10) }

#' # Plot
#' \dontrun{ model <- plot_dimred(model, method="UMAP") }
#' 
#' # Fetch data
#' \dontrun{ umap.df <- plot_dimred(model, method="UMAP", return_data=TRUE) }
#' 
run_umap <- function(object, factors = "all", groups = "all", n_neighbors = 30, min_dist = 0.3, metric = "cosine", ...) {
  
  # Sanity checks
  if (!is(object, "MOFA")) stop("'object' has to be an instance of MOFA")
  
  # Get factor values
  Z <- get_factors(object, factors = factors, groups = groups)
  
  # Concatenate groups
  Z <- do.call(rbind, Z)
  
  # Replace missing values by zero
  Z[is.na(Z)] <- 0
  
  # Run UMAP
  umap_embedding <- umap(Z, n_neighbors=n_neighbors, min_dist=min_dist, metric=metric, ...)

  # Add sample names and enumerate latent dimensions (e.g. UMAP1 and UMAP2)
  object@dim_red$UMAP <- data.frame(rownames(Z), umap_embedding)
  colnames(object@dim_red$UMAP) <- c("sample", paste0("UMAP", 1:ncol(umap_embedding)))
  
  return(object)
  
}



#' @title Plot dimensionality reduction based on MOFA factors
#' @name plot_dimred
#' @param object a trained \code{\link{MOFA}} object.
#' @param method string indicating which method has been used for non-linear dimensionality reduction (either 'umap' or 'tsne')
#' @param groups character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.
#' @param show_missing logical indicating whether to include samples for which \code{shape_by} or \code{color_by} is missing
#' @param color_by specifies groups or values used to color the samples. This can be either:
#' (1) a character giving the name of a feature present in the training data.
#' (2) a character giving the same of a column present in the sample metadata.
#' (3) a vector of the same length as the number of samples specifying discrete groups or continuous numeric values.
#' @param shape_by specifies groups or values used to shape the samples. This can be either:
#' (1) a character giving the name of a feature present in the training data, 
#' (2) a character giving the same of a column present in the sample metadata.
#' (3) a vector of the same length as the number of samples specifying discrete groups.
#' @param color_name name for color legend.
#' @param shape_name name for shape legend.
#' @param label logical indicating whether to label the medians of the clusters. Only if color_by is specified
#' @param dot_size numeric indicating dot size.
#' @param stroke numeric indicating the stroke size (the black border around the dots, default is NULL, infered automatically).
#' @param alpha_missing numeric indicating dot transparency of missing data.
#' @param legend logical indicating whether to add legend.
#' @param return_data logical indicating whether to return the long data frame to plot instead of plotting
#' @param rasterize logical indicating whether to rasterize plot using \code{\link[ggrastr]{geom_point_rast}}
#' @param ... extra arguments passed to \code{\link{run_umap}} or \code{\link{run_tsne}}.
#' @details This function plots dimensionality reduction projections that are stored in the \code{dim_red} slot.
#' Typically this contains UMAP or t-SNE projections computed using \code{\link{run_tsne}} or \code{\link{run_umap}}, respectively.
#' @return Returns a \code{ggplot2} object or a long data.frame (if return_data is TRUE)
#' @import ggplot2
#' @importFrom dplyr filter
#' @importFrom stats complete.cases
#' @importFrom tidyr spread gather
#' @importFrom magrittr %>% set_colnames
#' @importFrom ggrepel geom_text_repel
#' @export
#' @examples
#' # Using an existing trained model on simulated data
#' file <- system.file("extdata", "model.hdf5", package = "MOFA2")
#' model <- load_model(file)
#' 
#' # Run UMAP
#' model <- run_umap(model)
#' 
#' # Plot UMAP
#' plot_dimred(model, method = "UMAP")
#' 
#' # Plot UMAP, colour by Factor 1 values
#' plot_dimred(model, method = "UMAP", color_by = "Factor1")
#' 
#' # Plot UMAP, colour by the values of a specific feature
#' plot_dimred(model, method = "UMAP", color_by = "feature_0_view_0")
#' 
plot_dimred <- function(object, method = c("UMAP", "TSNE"), groups = "all", show_missing = TRUE,
                        color_by = NULL, shape_by = NULL, color_name = NULL, shape_name = NULL, label = FALSE,
                        dot_size = 1.5, stroke = NULL, alpha_missing = 1, legend = TRUE, rasterize = FALSE, return_data = FALSE, ...) {
  
  # Sanity checks
  if (!is(object, "MOFA")) stop("'object' has to be an instance of MOFA")

  # If UMAP or TSNE is requested but were not computed, compute the requested embedding
  if ((method %in% c("UMAP", "TSNE")) && (!.hasSlot(object, "dim_red") || !(method %in% names(object@dim_red)))) {
    message(paste0(method, " embedding was not computed. Running run_", tolower(method), "()..."))
    if (method == "UMAP") {
      object <- run_umap(object, ...)
    } else if (method == "TSNE") {
      object <- run_tsne(object, ...)
    }
  }
  
  # make sure the slot for the requested method exists
  method <- match.arg(method, names(object@dim_red))  
  
  # Plotting multiple features
  if (length(color_by)>1) {
    .args <- as.list(match.call()[-1])
    plist <- lapply(color_by, function(i) {
      .args[["color_by"]] <- i
      do.call(plot_dimred, .args)
    })
    p <- cowplot::plot_grid(plotlist=plist)
    return(p)
  }
  
  # Remember color_name and shape_name if not provided
  if (!is.null(color_by) && (length(color_by) == 1) && is.null(color_name))
    color_name <- color_by
  if (!is.null(shape_by) && (length(shape_by) == 1) && is.null(shape_name))
    shape_name <- shape_by
  
  # Fetch latent manifold
  Z <- object@dim_red[[method]]
  latent_dimensions_names <- colnames(Z)[-1]
  Z <- gather(Z, -sample, key="latent_dimension", value="value")
  
  # Subset groups
  groups <- .check_and_get_groups(object, groups)
  Z <- Z[Z$sample%in%unlist(samples_names(object)[groups]),]
  
  # Set color and shape
  color_by <- .set_colorby(object, color_by)
  shape_by <- .set_shapeby(object, shape_by)
  
  # Merge factor values with color and shape information
  df <- merge(Z, color_by, by="sample")
  df <- merge(df, shape_by, by="sample")
  df$shape_by <- as.character(df$shape_by)
  
  # Remove missing values
  if(!show_missing) df <- filter(df, !is.na(color_by) & !is.na(shape_by))
  df$observed <- as.factor(!is.na(df$color_by))
  
  # spread over latent dimensions
  df <- spread(df, key="latent_dimension", value="value")
  df <- set_colnames(df, c(colnames(df)[seq_len(4)], "x", "y"))
  
  # Return data if requested instead of plotting
  if (return_data) return(df)

  # Set stroke
  if (is.null(stroke)) if (length(unique(df$sample))<1000) { stroke <- 0.5 } else { stroke <- 0 }
  
  # Generate plot
  p <- ggplot(df, aes(x = .data$x, y = .data$y)) + 
    labs(x = latent_dimensions_names[1], y = latent_dimensions_names[2]) +
    theme_classic() +
    theme(
      axis.text = element_blank(), 
      axis.title = element_blank(), 
      axis.line = element_line(color = "black", linewidth = 0.5), 
      axis.ticks = element_blank()
    )
  
  # Add dots  
  if (rasterize) {
    message("for rasterizing the plot we use ggrastr::geom_point_rast()")
    p <- p + ggrastr::geom_point_rast(aes(fill = .data$color_by, shape = .data$shape_by, alpha = .data$observed), size = dot_size, stroke = stroke)
  } else {
    p <- p + geom_point(aes(fill = .data$color_by, shape = .data$shape_by, alpha = .data$observed), size = dot_size, stroke = stroke)
    
  }      
  
  # Add legend for alpha
  if (length(unique(df$observed))>1) { 
    p <- p + scale_alpha_manual(values = c("TRUE"=1.0, "FALSE"=alpha_missing))
  } else { 
    p <- p + scale_alpha_manual(values = 1.0)
  }
  p <- p + guides(alpha=FALSE)
    
  # Label clusters
  if (label && length(unique(df$color_by)) > 1 && length(unique(df$color_by))<50) {
    groups <- unique(df$color_by)
    labels.loc <- lapply(
      X = groups,
      FUN = function(i) {
        data.use <- df[df[,"color_by"] == i, , drop = FALSE]
        data.medians <- as.data.frame(x = t(x = apply(X = data.use[, c("x","y"), drop = FALSE], MARGIN = 2, FUN = median, na.rm = TRUE)))
        data.medians[, "color_by"] <- i
        return(data.medians)
      }
    ) %>% do.call("rbind",.)
    p <- p + geom_text_repel(aes(label=.data$color_by), data=labels.loc)
  }
  
  
  # Add legend
  p <- .add_legend(p, df, legend, color_name, shape_name)
  
  return(p)
}
bioFAM/MOFA2 documentation built on June 12, 2024, 3:57 p.m.