#' Function to load breast cancer expression sets from the Experiment Hub
#'
#' This function returns breast cancer datasets from the hub and a vector of
#' patients from the datasets that are most likely duplicates
#'
#' @param loadString a character vector specifying which data will be loaded.
#' The default is "majority", which loads in 37 of the 39 datasets.
#' The other option is to provide a character vecotr of the names of the
#' datasets to load. The metabric and tcga datasets areloaded separately as
#' they are very large and doing so will help prevent memory allocation errors
#' for R windows. Furthermore, these datasets are so large that they dominate
#' statistical analyses so it is best that they are analyzed separate of the
#' 37 smaller datasets loaded with the string majority
#' @param removeDuplicates remove patients with a Spearman correlation greater
#' than or equal to 0.98 with other patient expression profiles (default TRUE)
#' @param quantileCutoff A nueric between 0 and 1 specifying to remove genes
#' with standard deviation below the required quantile (default 0)
#' @param rescale apply centering and scaling to the expression sets
#' (default FALSE)
#' @param minNumberGenes an integer specifying to remove expression sets with
#' less genes than this number (default 0)
#' @param minNumberEvents an integer specifying how man survival events must be
#' in the dataset to keep the dataset (default 0)
#' @param minSampleSize an integer specifying the minimum number of patients
#' required in an eset (default 0)
#' @param removeRetracted remove datasets from retracted papers (default TRUE,
#' currently just PMID17290060 dataset)
#' @param removeSubsets remove datasets that are a subset of other datasets
#' (defeault TRUE, currently just PMID19318476)
#' @param keepCommonOnly remove probes not common to all datasets
#' (default FALSE)
#' @param imputeMissing remove patients from datasets with missing expression
#' values
#'
#' @return a list with 2 elements. The First element named esets contains the
#' datasets. The second element named duplicates contains a vector with patient
#' IDs for the duplicate patients (those with Spearman correlation greater
#' than or equal to 0.98 with other patient expression profiles).
#'
#' @examples
#'
#' ## Use the default loadString="majority" if you want the 37 smaller datasets
#' esetsAndDups <- loadBreastEsets(loadString = c("CAL", "DFHCC", "DFHCC2",
#' "DFHCC3", "DUKE", "DUKE2", "EMC2"))
#'
#' @importFrom Biobase esApply featureNames sampleNames exprs pData
#' experimentData
#' @importFrom lattice levelplot
#' @importFrom impute impute.knn
#' @importFrom ExperimentHub ExperimentHub
#' @importFrom AnnotationHub query
#' @importFrom stats complete.cases sd quantile
#' @export
loadBreastEsets <- function(loadString = "majority", removeDuplicates = TRUE,
quantileCutoff = 0, rescale = FALSE, minNumberGenes = 0,
minNumberEvents = 0, minSampleSize = 0, removeRetracted = TRUE,
removeSubsets = TRUE, keepCommonOnly = FALSE, imputeMissing = FALSE)
{
duplicates <- NULL
filterQuantile <- function(object, q){
if (!identical(q >=0 && q < 1, TRUE))
stop("require 0 <= q < 1")
if (!identical(class(object) == "ExpressionSet", TRUE))
stop("object must be an ExpressionSet")
geneSd <- Biobase::esApply(object,1,sd, na.rm=TRUE)
gene.quantile <- stats::quantile(geneSd, probs=q)
actual.makescutoff <- sum(geneSd < gene.quantile) / length(geneSd)
##make sure the correct number of genes are getting filtered:
if (abs(q - actual.makescutoff) > 0.01){
stop("Not scaling this object, likely pre-scaled.")
}else{
object <- object[geneSd > gene.quantile, ]
}
return(object)
}
##recursive intersect function
intersectMany <- function(lst){
## Find the intersection of multiple vectors stored as elements of a
## list, through a tail-recursive function.
if (length(lst) == 2){
return(intersect(lst[[1]],lst[[2]]))
}else{
return(intersectMany(c(list(intersect(lst[[1]],lst[[2]])),lst[seq(-1, -2)])))
}
}
##Split out non-specific probe sets
expandProbesets <- function (eset, sep = "///"){
x <- lapply(Biobase::featureNames(eset), function(x) strsplit(x, sep)[[1]])
eset <- eset[order(vapply(x, length, numeric(1))), ]
x <- lapply(Biobase::featureNames(eset), function(x) strsplit(x, sep)[[1]])
idx <- unlist(vapply(x, function(i) rep(i, length(x)), character(length(x))))
xx <- !duplicated(unlist(x))
idx <- idx[xx]
x <- unlist(x)[xx]
eset <- eset[idx, ]
Biobase::featureNames(eset) <- x
eset
}
## -----------------------------------------------------------------------------
##load the esets
## -----------------------------------------------------------------------------
hub = ExperimentHub::ExperimentHub()
#AnnotationHub::possibleDates(hub)
#ovarianData = query(hub, c("MetaGxOvarian", "ExpressionSet"))
breastData <- query(hub, c("MetaGxBreast", "ExpressionSet"))
tcgaInd <- which(grepl("TCGA", breastData$title))
metabricInd = which(grepl("METABRIC", breastData$title))
if(length(loadString) == 1) {
switch(loadString,
"majority" = { breastData <- breastData[-c(metabricInd, tcgaInd)] },
'tcga' = { breastData <- breastData[tcgaInd] },
'metabric' = { breastData <- breastData[metabricInd] },
stop("loadString needs to be one of majority, metabric, tcga, or a
scharacter vector of datasets to load from the hub")
)
} else {
keepIndVec <- c()
for(i in seq_len(length(loadString)))
{
keepInd <- which(grepl(paste0(loadString[i], "_"), paste0(breastData$title, "_")))
if(length(keepInd) == 0){
stop(paste(loadString[i],
"could not be found in the MetaGxBreast package in the experiment hub"))
}else{
keepIndVec <- c(keepIndVec, keepInd)
}
}
breastData <- breastData[keepIndVec]
}
esets <- list()
for(i in seq_len(length(breastData)))
{
dataName <- breastData[i]$title
esets[[i]] <- breastData[[names(breastData)[i]]]
names(esets)[i] <- breastData[i]$title
}
## -----------------------------------------------------------------------------
##Explicit removal of samples from specified datasets:
## -----------------------------------------------------------------------------
delim <- ":" ##This is the delimiter used to specify dataset:sample,
## same as used in metagx getbrcadata
#load("inst\\extdata\\BenDuplicate.rda")
#source(system.file("extdata", "patientselection.config", package="MetaGxBreast"))
load(system.file("extdata", "duplicates.rda", package="MetaGxBreast"))
rmix <- duplicates
ii <- 1
while (length(rmix) > ii){
rmix <- rmix [!is.element(names(rmix), rmix[[ii]])]
ii <- ii+1
}
rmix <- unique(unlist(rmix))
message("Clean up the esets.")
for (i in seq_len(length(esets))){
eset <- esets[[i]]
##filter genes with standard deviation below the required quantile
if(quantileCutoff > 0 && quantileCutoff < 1){
eset <- filterQuantile(eset, q=quantileCutoff)
}
##rescale to z-scores
if(rescale == TRUE){
Biobase::exprs(eset) <- t(scale(t(Biobase::exprs(eset))))
}
if(removeDuplicates == TRUE){
keepix <- setdiff(colnames(eset@assayData$exprs), rmix)
if(length(keepix) != length(colnames(eset@assayData$exprs)))
{
newEset <- ExpressionSet(Biobase::exprs(eset)[, keepix, drop=FALSE])
newEset@experimentData <- eset@experimentData
newEset@phenoData <- eset@phenoData
newEset@phenoData@data <- Biobase::pData(eset)[keepix, , drop=FALSE]
newEset@featureData <- eset@featureData
eset <- newEset
}
#Biobase::exprs(eset) <- Biobase::exprs(eset)[, keepix, drop=FALSE]
#Biobase::pData(eset) <- Biobase::pData(eset)[keepix, , drop=FALSE]
}
##include study if it has enough samples and events:
if (!is.na(minNumberEvents) &&
exists("minSampleSize") && !is.na(minSampleSize) &&
minNumberEvents > 0 &&
sum(eset$vital_status == "deceased") < minNumberEvents ||
ncol(eset) < minSampleSize)
{
message(paste("excluding", "(minNumberEvents or minSampleSize)"))
next
}
if(nrow(eset) < minNumberGenes) {
message(paste("excluding experiment hub dataset",breastData[i]$title,"(minNumberGenes)"))
next
}
if(removeRetracted &&
length(grep("retracted",
Biobase::experimentData(eset)@other$warnings$warnings)) > 0)
{
message(paste("excluding experiment hub dataset",
breastData[i]$title,"(removeRetracted)"))
next
}
if(removeSubsets && length(grep("subset", Biobase::experimentData(eset)@other$warnings$warnings)) > 0){
message(paste("excluding experiment hub dataset",breastData[i]$title,"(removeSubsets)"))
next
}
message(paste("including experiment hub dataset",breastData[i]$title))
## featureNames(eset) <- make.names(featureNames(eset)) ##should not do this, it is irreversible.
esets[[i]] <- eset
rm(eset)
}
##optionally take the intersection of genes common to all platforms:
if(keepCommonOnly){
features.per.dataset <- lapply(esets, Biobase::featureNames)
intersect.genes <- intersectMany(features.per.dataset)
esets <- lapply(esets, function(eset){
eset <- eset[intersect.genes, ]
return(eset)
})
}
ids.with.missing.data <- which(vapply(esets, function(X)
sum(!complete.cases(Biobase::exprs(X))) > 0, numeric(1)) == 1)
message(paste("Ids with missing data:", paste(names(ids.with.missing.data),
collapse=", ")))
if (length(ids.with.missing.data) > 0 && imputeMissing) {
for (i in ids.with.missing.data) {
Biobase::exprs(esets[[i]]) <- impute::impute.knn(Biobase::exprs(esets[[i]]))$data
}
}
retList <- list(esets, duplicates)
names(retList) <- c("esets", "duplicates")
return(retList)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.