pca | R Documentation |
Perform a dimension reduction. Store sample scores, feature loadings, and dimension variances.
pca(
object,
by = "sample_id",
assay = assayNames(object)[1],
ndim = 2,
sep = FITSEP,
minvar = 0,
center_samples = TRUE,
verbose = TRUE,
plot = FALSE,
...
)
pls(
object,
by = "subgroup",
assay = assayNames(object)[1],
ndim = 2,
sep = FITSEP,
minvar = 0,
verbose = FALSE,
plot = FALSE,
...
)
sma(
object,
by = "sample_id",
assay = assayNames(object)[1],
ndim = 2,
sep = FITSEP,
minvar = 0,
verbose = TRUE,
plot = FALSE,
...
)
lda(
object,
assay = assayNames(object)[1],
by = "subgroup",
ndim = 2,
sep = FITSEP,
minvar = 0,
verbose = TRUE,
plot = FALSE,
...
)
spls(
object,
assay = assayNames(object)[1],
by = "subgroup",
ndim = 2,
sep = FITSEP,
minvar = 0,
plot = FALSE,
...
)
opls(
object,
by = "subgroup",
assay = assayNames(object)[1],
ndim = 2,
sep = FITSEP,
minvar = 0,
verbose = FALSE,
plot = FALSE,
...
)
object |
SummarizedExperiment |
by |
svar or NULL |
assay |
string |
ndim |
number |
sep |
string |
minvar |
number |
center_samples |
TRUE/FALSE: center samples prior to pca ? |
verbose |
TRUE/FALSE: message ? |
plot |
TRUE/FALSE: plot ? |
... |
passed to biplot |
SummarizedExperiment
Aditya Bhagwat, Laure Cougnaud (LDA)
file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
pca(object, plot = TRUE) # Principal Component Analysis
pls(object, plot = TRUE) # Partial Least Squares
lda(object, plot = TRUE) # Linear Discriminant Analysis
sma(object, plot = TRUE) # Spectral Map Analysis
spls(object, plot = TRUE) # Sparse PLS
# opls(object, plot = TRUE) # OPLS # outcommented because it produces a file named FALSE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.