modelvar | R Documentation |
Get model variable
modelvar(object, ...)
## S3 method for class 'data.table'
modelvar(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit),
...
)
## S3 method for class 'SummarizedExperiment'
modelvar(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit),
...
)
effectvar(object, fit = fits(object), coef = default_coefs(object, fit = fit))
tvar(object, fit = fits(object), coef = default_coefs(object, fit = fit))
pvar(object, fit = fits(object), coef = default_coefs(object, fit = fit))
fdrvar(object, fit = fits(object), coef = default_coefs(object, fit = fit))
abstractvar(object, ...)
## S3 method for class 'data.table'
abstractvar(
object,
fit = fits(object),
coef = default_coefs(object, fit = fit),
...
)
## S3 method for class 'SummarizedExperiment'
abstractvar(
object,
fit = fits(object),
coef = default_coefs(object, fit = fit),
...
)
modelvec(object, ...)
## S3 method for class 'data.table'
modelvec(
object,
quantity,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id",
...
)
## S3 method for class 'SummarizedExperiment'
modelvec(
object,
quantity,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id",
...
)
effectvec(
object,
fit = fits(object)[1],
coef = default_coefs(object)[1],
fvar = "feature_id"
)
tvec(
object,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id"
)
pvec(
object,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id"
)
fdrvec(
object,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id"
)
abstractvec(object, ...)
## S3 method for class 'data.table'
abstractvec(
object,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id",
...
)
## S3 method for class 'SummarizedExperiment'
abstractvec(
object,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id",
...
)
modeldt(object, ...)
## S3 method for class 'data.table'
modeldt(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit),
...
)
## S3 method for class 'SummarizedExperiment'
modeldt(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit),
...
)
effectdt(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit)
)
tdt(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit)
)
pdt(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit)
)
modelmat(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit)
)
modelmat(
object,
quantity,
fit = fits(object),
coef = default_coefs(object, fit = fit)
)
effectmat(object, fit = fits(object), coef = default_coefs(object, fit = fit))
effectsizemat(
object,
fit = fits(object),
coef = default_coefs(object, fit = fit)
)
tmat(object, fit = fits(object), coef = default_coefs(object, fit = fit))
pmat(object, fit = fits(object), coef = default_coefs(object, fit = fit))
fdrmat(object, fit = fits(object), coef = default_coefs(object, fit = fit))
modelfeatures(object, ...)
## S3 method for class 'data.table'
modelfeatures(
object,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id",
significancevar = "p",
significance = 0.05,
effectdirection = "<>",
effectsize = 0,
...
)
## S3 method for class 'SummarizedExperiment'
modelfeatures(object, ...)
upfeatures(
object,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id",
significancevar = "p",
significance = 0.05,
effectsize = 0
)
downfeatures(
object,
fit = fits(object)[1],
coef = default_coefs(object, fit = fit)[1],
fvar = "feature_id",
significancevar = "p",
significance = 0.05,
effectsize = 0
)
object |
data.table or SummarizedExperiment |
... |
S3 dispatch |
quantity |
'p', 'effect', 'fdr', 't', or 'se' |
fit |
string (vector) |
coef |
string (vector) |
fvar |
'feature_id' or other fvar for values (pvec) or names (upfeatures) |
significancevar |
'p' or 'fdr' |
significance |
p or fdr cutoff (fractional number) |
effectdirection |
'<>', '<' or '>' |
effectsize |
effectsize cutoff (positive number) |
string (tvar), matrix (tmat), numeric vector (tvec), character vector (tfeatures)
file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% fit_limma(statvars = c('effect', 't', 'p'))
object %<>% fit_lm( statvars = c('effect', 't', 'p'))
effectvar(object)
effectvec(object)[1:3]
effectdt(object)[1:3, ]
effectmat(object)[1:3, ]
tvar(object)
tvec(object)[1:3]
tdt(object)[1:3, ]
tmat(object)[1:3, ]
pvar(object)
pvec(object)[1:3]
pdt(object)[1:3, ]
pmat(object)[1:3, ]
modelfeatures(object)
downfeatures(object)
upfeatures(object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.