DEsubs <- function( org, mRNAexpr, mRNAnomenclature, pathways,
DEtool, DEpar, CORtool, CORpar, subpathwayType,
rankedList=NULL, verbose=TRUE)
{
# Create the adjacency matrix
dataNet <- .constructNetwork(org=org,
mRNAexpr=mRNAexpr,
mRNAnomenclature=mRNAnomenclature,
pathways=pathways)
mRNAexpr <- dataNet[['mRNAexpr']]
edgeList <- dataNet[['edgeList']]
# Filter the nodes and the edges of the organism's pathways network
lens <- suppressWarnings(split(1:ncol(mRNAexpr), 1:2))
lens <- unname(sapply(lens, function(x) { length(x) }))
net <- .pruneNetwork( edgeList=edgeList,
mRNAexpr=mRNAexpr,
DEGchoice=DEtool,
DEGthresh=DEpar,
classes=c(rep(1, lens[1]), rep(2, lens[2]) ),
corr_threshold=CORpar, org=org,
CORtool=CORtool,
rankedList=rankedList,
verbose=verbose)
edgeList <- net[['edgeList']]
DEgenes <- net[['DEgenes']]
output <- list('org'=org, 'mRNAnomenclature'=mRNAnomenclature,
'edgeList'=edgeList, 'DEgenes'=DEgenes)
# Choose specific subpathways
subTypes <- subpathwayTypes(grouping=subpathwayType)
# Subpathway analysis
for (subType in subTypes)
{
subs <- .subpathwayAnalysis( edgeList=edgeList,
method=subType,
DEgenes=DEgenes,
org=org,
verbose=verbose )
output <- c(output, subs)
}
return( output )
}
.DEanalysis <- function( count.matrix, DEGchoice, classes )
{
#
# Differential expression analysis using various DE analysis tools from
#
# Soneson,C. and Delorenzi,M. (2013) A comparison of methods for
# differential expression analysis of RNA-seq data. BMC bioinformatics,
# 14(1), 1.
#
if ( missing(count.matrix) ) { message('Please supply a matrix.') }
if ( missing(classes) ) { message('Please supply the classes.') }
if ( missing(DEGchoice) ) { message('Please supply a type.') }
supportedMethods <- c('edgeR', 'DESeq', 'EBSeq', 'samr', 'NBPSeq',
'voom+limma', 'vst+limma', 'TSPM')
if ( DEGchoice == 'edgeR' )
{
# run edgeR
edgeR.dgelist <- DGEList(counts=count.matrix, group=factor(classes))
edgeR.dgelist <- calcNormFactors(edgeR.dgelist, method="TMM")
edgeR.dgelist <- estimateCommonDisp(edgeR.dgelist)
edgeR.dgelist <- estimateTagwiseDisp(edgeR.dgelist, trend="movingave")
edgeR.test <- exactTest(edgeR.dgelist)
edgeR.pvalues <- edgeR.test[['table']][['PValue']]
genes <- rownames(edgeR.test[['table']])
edgeR.adjpvalues <- p.adjust(edgeR.pvalues, method="BH")
adjpvalues <- edgeR.adjpvalues
names(adjpvalues) <- genes
return(adjpvalues)
}
if ( DEGchoice == 'DESeq' )
{
# run DESeq
DESeq.cds <- DESeq::newCountDataSet(countData=count.matrix,
conditions=factor(classes))
DESeq.cds <- DESeq::estimateSizeFactors(DESeq.cds)
DESeq.cds <- DESeq::estimateDispersions(DESeq.cds,
sharingMode="maximum", method="pooled",
fitType="local")
DESeq.test <- nbinomTest(DESeq.cds, "1", "2")
DESeq.pvalues <- DESeq.test[['pval']]
genes <- DESeq.test[['id']]
DESeq.adjpvalues <- p.adjust(DESeq.pvalues, method="BH")
adjpvalues <- DESeq.adjpvalues
names(adjpvalues) <- genes
return(adjpvalues)
}
if ( DEGchoice == 'voom+limma' )
{
# voom+limma
nf <- calcNormFactors(count.matrix, method="TMM")
voom.data <- voom( count.matrix,
design=model.matrix(~factor(classes)),
lib.size=colSums(count.matrix)*nf)
voom.data[['genes']] <- rownames(count.matrix)
voom.fitlimma <- lmFit( voom.data,
design=model.matrix(~factor(classes)))
voom.fitbayes <- eBayes(voom.fitlimma)
voom.pvalues <- voom.fitbayes[['p.value']][, 2]
voom.adjpvalues <- p.adjust(voom.pvalues, method="BH")
voom.genes <- rownames(voom.fitbayes[['p.value']])
adjpvalues <- voom.adjpvalues
names(adjpvalues) <- voom.genes
return(adjpvalues)
}
if ( DEGchoice == 'samr' )
{
# samr
sink( tempfile() )
SAMseq.test <- suppressMessages(SAMseq(count.matrix, classes,
resp.type="Two class unpaired",
geneid = rownames(count.matrix),
genenames = rownames(count.matrix),
nperms = 100, nresamp = 20, fdr.output = 1))
SAMseq.result.table <- rbind(
SAMseq.test[['siggenes.table']][['genes.up']],
SAMseq.test[['siggenes.table']][['genes.lo']])
SAMseq.score <- rep(0, nrow(count.matrix))
idx <- match(SAMseq.result.table[,1],
rownames(count.matrix))
SAMseq.score[idx] <- as.numeric(SAMseq.result.table[,3])
SAMseq.FDR <- rep(1, nrow(count.matrix))
idx <- match(SAMseq.result.table[,1],
rownames(count.matrix))
SAMseq.FDR[idx] <- as.numeric(SAMseq.result.table[,5])/100
adjpvalues <- SAMseq.FDR
genes <- SAMseq.result.table[, 'Gene ID']
names(adjpvalues) <- genes
sink()
return(adjpvalues)
}
if ( DEGchoice == 'EBSeq' )
{
# run EBSeq
sizes <- MedianNorm(count.matrix)
EBSeq.test <- suppressMessages( EBTest(Data=count.matrix,
Conditions=factor(classes), sizeFactors=sizes,
maxround=10))
EBSeq.ppmat <- GetPPMat(EBSeq.test)
EBSeq.probabilities.DE <- EBSeq.ppmat[, "PPDE"]
EBSeq.lFDR <- 1 - EBSeq.ppmat[, "PPDE"]
EBSeq.FDR <- rep(NA, length(EBSeq.lFDR))
names(EBSeq.FDR) <- names(EBSeq.lFDR)
for (i in seq_len(length(EBSeq.lFDR)) )
{
idx <- which(EBSeq.lFDR <= EBSeq.lFDR[i])
EBSeq.FDR[i] <- mean(EBSeq.lFDR[idx])
}
adjpvalues <- EBSeq.FDR
return(adjpvalues)
}
if ( DEGchoice == 'vst+limma' )
{
# vst+limma
DESeq.cds <- newCountDataSet( countData=count.matrix,
conditions=factor(classes))
DESeq.cds <- estimateSizeFactors(DESeq.cds)
DESeq.cds <- estimateDispersions( DESeq.cds,
method="blind", fitType="local")
DESeq.vst <- getVarianceStabilizedData(DESeq.cds)
DESeq.vst.fitlimma <- lmFit( DESeq.vst,
design=model.matrix(~factor(classes)))
DESeq.vst.fitbayes <- eBayes(DESeq.vst.fitlimma)
DESeq.vst.pvalues <- DESeq.vst.fitbayes[['p.value']][, 2]
genes <- rownames(DESeq.vst.fitbayes[['p.value']])
DESeq.vst.adjpvalues <- p.adjust(DESeq.vst.pvalues, method="BH")
adjpvalues <- DESeq.vst.adjpvalues
names(adjpvalues) <- genes
return(adjpvalues)
}
if ( DEGchoice == 'NBPSeq' )
{
# NBPSeq
NBPSeq.dgelist <- DGEList( counts=count.matrix,
group=factor(classes))
NBPSeq.dgelist <- calcNormFactors(NBPSeq.dgelist, method="TMM")
NBPSeq.norm.factors <- as.vector(
NBPSeq.dgelist[['samples']][['norm.factors']])
capture.output(NBPSeq.test <- nbp.test(counts=count.matrix,
grp.ids=classes, grp1=1,grp2=2, norm.factors=NBPSeq.norm.factors))
NBPSeq.pvalues <- NBPSeq.test[['p.values']]
NBPSeq.adjpvalues <- NBPSeq.test[['q.values']]
adjpvalues <- NBPSeq.adjpvalues
names(adjpvalues) <- rownames(NBPSeq.test[['counts']])
return(adjpvalues)
}
if ( DEGchoice == 'TSPM' )
{
TSPM.dgelist <- DGEList(counts = count.matrix, group = factor(classes))
TSPM.dgelist <- calcNormFactors(TSPM.dgelist, method = "TMM")
v1 <- as.vector(TSPM.dgelist[['samples']][['norm.factors']])
v2 <- as.vector(TSPM.dgelist[['samples']][['lib.size']])
norm.lib.sizes <- v1 * v2
TSPM.test <- TSPM(counts = count.matrix, x1 = factor(classes),
x0 = rep(1, length(classes)), lib.size = norm.lib.sizes)
TSPM.pvalues <- TSPM.test[['pvalues']]
TSPM.adjpvalues <- TSPM.test[['padj']]
adjpvalues <- TSPM.adjpvalues
genes <- rownames(TSPM.dgelist[['counts']])
names(adjpvalues) <- genes
return(adjpvalues)
}
if ( DEGchoice == 'DESeq2' )
{
# run DESeq2
sink(tempfile())
DESeq2.ds <- DESeq2::DESeqDataSetFromMatrix(countData = count.matrix,
colData = data.frame(condition = factor(classes)),
design = ~ condition)
DESeq2.ds <- DESeq2::estimateSizeFactors( DESeq2.ds )
DESeq2.ds <- DESeq2::estimateDispersions( DESeq2.ds, fitType="local")
DESeq2.ds <- DESeq2::nbinomWaldTest( DESeq2.ds )
DESeq2.results <- DESeq2::results(DESeq2.ds )
adjpvalues <- p.adjust(DESeq2.results[['pvalue']], method="BH")
names(adjpvalues) <- rownames(count.matrix)
sink()
return(adjpvalues)
}
if ( DEGchoice == 'vst2+limma' )
{
# vst(DESeq2)+limma
sink(tempfile())
DESeq2.ds <- DESeq2::DESeqDataSetFromMatrix(countData = count.matrix,
colData = data.frame(condition = factor(classes)),
design = ~ condition)
DESeq2.ds <- DESeq2::estimateSizeFactors( DESeq2.ds )
DESeq2.ds <- DESeq2::estimateDispersions( DESeq2.ds, fitType="local")
DESeq2.vst <- DESeq2::getVarianceStabilizedData( DESeq2.ds )
DESeq2.vst.fitlimma <- lmFit( DESeq2.vst,
design=model.matrix(~factor(classes)))
DESeq2.vst.fitbayes <- eBayes(DESeq2.vst.fitlimma)
DESeq2.vst.pvalues <- DESeq2.vst.fitbayes[['p.value']][, 2]
genes <- rownames(DESeq2.vst.fitbayes[['p.value']])
DESeq2.vst.adjpvalues <- p.adjust(DESeq2.vst.pvalues, method="BH")
adjpvalues <- DESeq2.vst.adjpvalues
names(adjpvalues) <- genes
sink()
return(adjpvalues)
}
if ( !is.null(DEGchoice) )
{
unsupportedOptions <- DEGchoice[!DEGchoice %in% supportedMethods]
if ( length(unsupportedOptions) > 0 )
{
message('Option ', unsupportedOptions, ' not supported.')
message('Supported options are ',
paste0(supportedMethods, collapse=', '), '.')
return( NULL )
}
}
return( NULL )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.