#' Methimpute data import
#'
#' This page provides an overview of all \pkg{\link{methimpute}} data import functions.
#' @param file The file to import.
#' @param chrom.lengths A data.frame with chromosome names in the first, and chromosome lengths in the second column. Only chromosomes named in here will be returned. Alternatively a tab-separated file with such a data.frame (with headers).
#' @param skip The number of lines to skip. Usually 1 if the file contains a header and 0 otherwise.
#' @param contexts A character vector of the contexts that are to be assigned. Since some programs report 5-letter contexts, this parameter can be used to obtain a reduced number of contexts. Will yield contexts CG, CHG, CHH by default. Set \code{contexts=NULL} to obtain all available contexts.
#' @return A \code{\link{methimputeData}} object.
#' @name import
#' @examples
#'## Get an example file in BSSeeker format
#'file <- system.file("extdata","arabidopsis_bsseeker.txt.gz", package="methimpute")
#'data(arabidopsis_chromosomes)
#'bsseeker.data <- importBSSeeker(file, chrom.lengths=arabidopsis_chromosomes)
#'
#'## Get an example file in Bismark format
#'file <- system.file("extdata","arabidopsis_bismark.txt", package="methimpute")
#'data(arabidopsis_chromosomes)
#'arabidopsis_chromosomes$chromosome <- sub('chr', '', arabidopsis_chromosomes$chromosome)
#'bismark.data <- importBismark(file, chrom.lengths=arabidopsis_chromosomes)
#'
#'## Get an example file in BSMAP format
#'file <- system.file("extdata","arabidopsis_BSMAP.txt", package="methimpute")
#'data(arabidopsis_chromosomes)
#'bsmap.data <- importBSMAP(file, chrom.lengths=arabidopsis_chromosomes)
#'
#'## Get an example file in Methylpy format
#'file <- system.file("extdata","arabidopsis_methylpy.txt", package="methimpute")
#'data(arabidopsis_chromosomes)
#'arabidopsis_chromosomes$chromosome <- sub('chr', '', arabidopsis_chromosomes$chromosome)
#'methylpy.data <- importMethylpy(file, chrom.lengths=arabidopsis_chromosomes)
NULL
#' @describeIn import Import a BSMAP methylation extractor file.
#' @importFrom Biostrings readDNAStringSet vcountPattern reverseComplement
#' @importFrom data.table fread
#' @importFrom utils read.table
#' @export
#'
importBSMAP <- function(file, chrom.lengths=NULL, skip=1, contexts=c(CG='NNCGN', CHG='NNCHG', CHH='NNCHH')) {
## Import data
classes <- c('character', 'numeric', 'character', 'character', 'numeric', 'numeric', 'numeric', 'numeric', 'numeric', 'numeric', 'numeric', 'numeric')
ptm <- startTimedMessage("Reading file ", file, " ...")
data.raw <- tryCatch({
data.raw <- data.table::fread(file, skip=skip, sep='\t', colClasses=classes)
}, error = function(err) {
data.raw <- utils::read.table(file, skip=skip, sep='\t', colClasses=classes)
})
data <- GRanges(seqnames=data.raw$V1, ranges=IRanges(start=data.raw$V2, end=data.raw$V2), strand=data.raw$V3, context=factor(NA, levels=names(contexts)), context.full=data.raw$V4)
counts <- array(NA, dim=c(length(data), 2), dimnames=list(NULL, c("methylated", "total")))
counts[,"methylated"] <- data.raw$V7
counts[,"total"] <- data.raw$V8
data$counts <- counts
rm(data.raw)
stopTimedMessage(ptm)
## Rework contexts
ptm <- startTimedMessage("Reworking contexts ...")
if (is.null(contexts)) {
data$context <- factor(data$context.full)
} else {
context.full <- Biostrings::DNAStringSet(data$context.full)
# Reverse complement minus
mask <- strand(data) == '-'
context.full[mask] <- Biostrings::reverseComplement(x = context.full[mask])
for (i1 in 1:length(contexts)) {
ind <- which(Biostrings::vcountPattern(contexts[i1], subject = context.full, fixed = FALSE) == 1)
data$context[ind] <- names(contexts)[i1]
}
}
data$context.full <- NULL
stopTimedMessage(ptm)
## Assign seqlengths
if (!is.null(chrom.lengths)) {
if (is.character(chrom.lengths)) {
df <- tryCatch({
df <- data.table::fread(chrom.lengths, header=TRUE)
}, error = function(err) {
df <- utils::read.table(chrom.lengths, header=TRUE)
})
} else if (is.data.frame(chrom.lengths)) {
df <- chrom.lengths
}
chrom.lengths <- df[,2]
names(chrom.lengths) <- df[,1]
# Filter by chromosomes supplied in chrom.lengths
data <- keepSeqlevels(data, seqlevels(data)[seqlevels(data) %in% names(chrom.lengths)])
seqlengths(data) <- chrom.lengths[names(seqlengths(data))]
}
return(data)
}
#' @describeIn import Import a Methylpy methylation extractor file.
#' @importFrom data.table fread
#' @importFrom utils read.table
#' @export
#'
importMethylpy <- function(file, chrom.lengths=NULL, skip=1, contexts=c(CG='CGN', CHG='CHG', CHH='CHH')) {
## Import data
classes <- c('character', 'numeric', 'character', 'character', 'numeric', 'numeric', 'numeric')
ptm <- startTimedMessage("Reading file ", file, " ...")
data.raw <- tryCatch({
data.raw <- data.table::fread(file, skip=skip, sep='\t', colClasses=classes)
}, error = function(err) {
data.raw <- utils::read.table(file, skip=skip, sep='\t', colClasses=classes)
})
data <- GRanges(seqnames=data.raw$V1, ranges=IRanges(start=data.raw$V2, end=data.raw$V2), strand=data.raw$V3, context=factor(NA, levels=names(contexts)), context.full=data.raw$V4)
counts <- array(NA, dim=c(length(data), 2), dimnames=list(NULL, c("methylated", "total")))
counts[,"methylated"] <- data.raw$V5
counts[,"total"] <- data.raw$V6
data$counts <- counts
data$binomial.test <- data.raw$V7
rm(data.raw)
stopTimedMessage(ptm)
## Rework contexts
ptm <- startTimedMessage("Reworking contexts ...")
if (is.null(contexts)) {
data$context <- factor(data$context.full)
} else {
context.full <- Biostrings::DNAStringSet(data$context.full)
for (i1 in 1:length(contexts)) {
ind <- which(Biostrings::vcountPattern(contexts[i1], subject = context.full, fixed = FALSE) == 1)
data$context[ind] <- names(contexts)[i1]
}
}
data$context.full <- NULL
stopTimedMessage(ptm)
## Assign seqlengths
if (!is.null(chrom.lengths)) {
if (is.character(chrom.lengths)) {
df <- tryCatch({
df <- data.table::fread(chrom.lengths, header=TRUE)
}, error = function(err) {
df <- utils::read.table(chrom.lengths, header=TRUE)
})
} else if (is.data.frame(chrom.lengths)) {
df <- chrom.lengths
}
chrom.lengths <- df[,2]
names(chrom.lengths) <- df[,1]
# Filter by chromosomes supplied in chrom.lengths
data <- keepSeqlevels(data, seqlevels(data)[seqlevels(data) %in% names(chrom.lengths)])
seqlengths(data) <- chrom.lengths[names(seqlengths(data))]
}
return(data)
}
#' @describeIn import Import a BSSeeker methylation extractor file.
#' @importFrom data.table fread
#' @importFrom utils read.table
#' @export
#'
importBSSeeker <- function(file, chrom.lengths=NULL, skip=0) {
# classes <- c(seqnames='character', nucleotide='character', position='numeric', context='character', context.dinucleotide='character', methylation.level='numeric', counts.methylated='numeric', counts.total='numeric')
classes <- c('character', 'character', 'numeric', 'character', 'character', 'numeric', 'numeric', 'numeric')
ptm <- startTimedMessage("Reading file ", file, " ...")
data.raw <- tryCatch({
data.raw <- data.table::fread(file, skip=skip, sep='\t', colClasses=classes)
}, error = function(err) {
data.raw <- utils::read.table(file, skip=skip, sep='\t', colClasses=classes)
})
data <- GRanges(seqnames=data.raw$V1, ranges=IRanges(start=data.raw$V3, end=data.raw$V3), strand=c('C'='+', 'G'='-')[data.raw$V2], context=data.raw$V4)
counts <- array(NA, dim=c(length(data), 2), dimnames=list(NULL, c("methylated", "total")))
counts[,"methylated"] <- data.raw$V7
counts[,"total"] <- data.raw$V8
data$counts <- counts
rm(data.raw)
stopTimedMessage(ptm)
## Assign seqlengths
if (!is.null(chrom.lengths)) {
if (is.character(chrom.lengths)) {
df <- tryCatch({
df <- data.table::fread(chrom.lengths, header=TRUE)
}, error = function(err) {
df <- utils::read.table(chrom.lengths, header=TRUE)
})
} else if (is.data.frame(chrom.lengths)) {
df <- chrom.lengths
}
chrom.lengths <- df[,2]
names(chrom.lengths) <- df[,1]
# Filter by chromosomes supplied in chrom.lengths
data <- keepSeqlevels(data, seqlevels(data)[seqlevels(data) %in% names(chrom.lengths)])
seqlengths(data) <- chrom.lengths[names(seqlengths(data))]
}
## Make factors
data$context <- factor(data$context)
return(data)
}
#' @describeIn import Import a Bismark methylation extractor file.
#' @importFrom data.table fread
#' @importFrom utils read.table
#' @export
#'
importBismark <- function(file, chrom.lengths=NULL, skip=0) {
# classes <- c(seqnames='character', position='numeric', strand='character', counts.methylated='numeric', counts.total='numeric', context='character', context.trinucleotide='character')
classes <- c('character', 'numeric', 'character', 'numeric', 'numeric', 'character', 'character')
ptm <- startTimedMessage("Reading file ", file, " ...")
data.raw <- tryCatch({
data.raw <- data.table::fread(file, skip=skip, sep='\t', colClasses=classes)
}, error = function(err) {
data.raw <- utils::read.table(file, skip=skip, sep='\t', colClasses=classes)
})
data <- GRanges(seqnames=data.raw$V1, ranges=IRanges(start=data.raw$V2, end=data.raw$V2), strand=data.raw$V3, context=data.raw$V6)
counts <- array(NA, dim=c(length(data), 2), dimnames=list(NULL, c("methylated", "total")))
counts[,"methylated"] <- data.raw$V4
counts[,"total"] <- data.raw$V4 + data.raw$V5
data$counts <- counts
rm(data.raw)
stopTimedMessage(ptm)
## Assign seqlengths
if (!is.null(chrom.lengths)) {
if (is.character(chrom.lengths)) {
df <- tryCatch({
df <- data.table::fread(chrom.lengths, header=TRUE)
}, error = function(err) {
df <- utils::read.table(chrom.lengths, header=TRUE)
})
} else if (is.data.frame(chrom.lengths)) {
df <- chrom.lengths
}
chrom.lengths <- df[,2]
names(chrom.lengths) <- df[,1]
# Filter by chromosomes supplied in chrom.lengths
data <- keepSeqlevels(data, seqlevels(data)[seqlevels(data) %in% names(chrom.lengths)])
seqlengths(data) <- chrom.lengths[names(seqlengths(data))]
}
## Make factors
data$context <- factor(data$context)
return(data)
}
#' Import a Rene methylation extractor file
#'
#' Import a Rene methylation extractor file into a \code{\link[GenomicRanges]{GRanges-class}} object.
#'
#' @param file The file to import.
#' @param chrom.lengths A data.frame with chromosome names in the first, and chromosome lengths in the second column. Only chromosomes named in here will be returned. Alternatively a tab-separated file with such a data.frame (with headers).
#' @param skip The number of lines to skip. Usually 1 if the file contains a header and 0 otherwise.
#' @return A \code{\link{methimputeData}} object.
#'
#' @importFrom data.table fread
#' @importFrom utils read.table
#' @examples
#'## Get an example file in Rene format
#'file <- system.file("extdata","arabidopsis_rene.txt", package="methimpute")
#'data(arabidopsis_chromosomes)
#'rene.data <- methimpute:::importRene(file, chrom.lengths=arabidopsis_chromosomes)
#'
importRene <- function(file, chrom.lengths=NULL, skip=1) {
classes <- c('character', 'numeric', 'character', 'NULL', 'character', 'numeric', 'numeric', 'numeric', 'numeric', 'numeric')
ptm <- startTimedMessage("Reading file ", file, " ...")
data.raw <- tryCatch({
data.raw <- data.table::fread(file, skip=skip, sep='\t', colClasses=classes)
}, error = function(err) {
data.raw <- utils::read.table(file, skip=skip, sep='\t', colClasses=classes)
})
data <- GRanges(seqnames=data.raw$V1, ranges=IRanges(start=data.raw$V2, end=data.raw$V2), strand=c('F'='+', 'R'='-')[data.raw$V3], methylated=data.raw$V10, context=data.raw$V5)
counts <- array(NA, dim=c(length(data), 2), dimnames=list(NULL, c("methylated", "total")))
counts[,"methylated"] <- data.raw$V6
counts[,"total"] <- data.raw$V7
data$counts <- counts
rm(data.raw)
stopTimedMessage(ptm)
seqlevels(data) <- paste0('chr', seqlevels(data))
## Assign seqlengths
if (!is.null(chrom.lengths)) {
if (is.character(chrom.lengths)) {
df <- tryCatch({
df <- data.table::fread(chrom.lengths, header=TRUE)
}, error = function(err) {
df <- utils::read.table(chrom.lengths, header=TRUE)
})
} else if (is.data.frame(chrom.lengths)) {
df <- chrom.lengths
}
chrom.lengths <- df[,2]
names(chrom.lengths) <- df[,1]
# Filter by chromosomes supplied in chrom.lengths
data <- keepSeqlevels(data, seqlevels(data)[seqlevels(data) %in% names(chrom.lengths)])
seqlengths(data) <- chrom.lengths[names(seqlengths(data))]
}
## Make factors
data$context <- factor(data$context)
return(data)
}
#' #' Import a Bismark methylation extractor file
#' #'
#' #' Import a Bismark methylation extractor file into a \code{\link[GenomicRanges]{GRanges-class}} object.
#' #'
#' #' @param files The files to import.
#' #' @param chrom.lengths A data.frame with chromosome names in the first, and chromosome lengths in the second column. Only chromosomes named in here will be returned. Alternatively a tab-separated file with such a data.frame (with headers).
#' #' @param temp.store A folder where to save temporary files on disk. Set to \code{NULL} if no temporary files should be created.
#' #' @return A \code{\link{methimputeData}} object.
#' #'
#' #' @importFrom data.table fread
#' #' @importFrom utils read.table
#' #' @export
#' importBismark <- function(files, chrom.lengths=NULL, temp.store=tempfile("importBismark")) {
#'
#' classes <- c('NULL', 'character', 'character', 'numeric', 'character')
#' datas <- GRangesList()
#'
#' if (!is.null(temp.store)) {
#' ## Create folder for temporary files
#' if (!file.exists(temp.store)) {
#' dir.create(temp.store)
#' }
#' }
#'
#' ### Do each file at a time to avoid memory overflow ###
#' data.dedups <- GRangesList()
#' for (i1 in 1:length(files)) {
#' file <- files[i1]
#' savename <- file.path(temp.store, paste0(basename(file), '.RData'))
#' if (!file.exists(savename)) {
#' ptm <- startTimedMessage("Reading file ", file, " ...")
#' data.raw <- tryCatch({
#' data.raw <- data.table::fread(file, skip=1, sep='\t', colClasses=classes)
#' }, error = function(err) {
#' data.raw <- utils::read.table(file, skip=1, sep='\t', colClasses=classes)
#' })
#' data <- GRanges(seqnames=data.raw$V3, ranges=IRanges(start=data.raw$V4, end=data.raw$V4), strand="*", methylated=factor(data.raw$V2, levels=c("-", "+")), context=data.raw$V5)
#' rm(data.raw)
#' stopTimedMessage(ptm)
#' if (!is.null(temp.store)) {
#' ptm <- startTimedMessage("Saving to file ", savename, " ...")
#' save(data, file=savename)
#' stopTimedMessage(ptm)
#' }
#' } else {
#' ptm <- startTimedMessage("Loading file ", savename, " ...")
#' temp.env <- new.env()
#' data <- get(load(savename, envir=temp.env), envir=temp.env)
#' stopTimedMessage(ptm)
#' }
#'
#' ## Sorting
#' ptm <- startTimedMessage("Sorting ...")
#' data <- sort(data)
#' stopTimedMessage(ptm)
#'
#' ## Get counts at each position
#' ptm <- startTimedMessage("Getting counts ...")
#' data$methylated <- as.logical(as.integer(data$methylated)-1)
#' data$mask.dup <- c(FALSE, as.logical(data@seqnames[-1] == data@seqnames[-length(data)])) & c(FALSE, as.logical(data@ranges@start[-1] == data@ranges@start[-length(data)]))
#' data$unmeth.sum <- rev(cumsum(rev(!data$methylated)))
#' data$meth.sum <- rev(cumsum(rev(data$methylated)))
#' data.dedup <- data[!data$mask.dup]
#' rm(data)
#' data.dedup$counts.unmethylated <- -diff(c(data.dedup$unmeth.sum, 0))
#' data.dedup$counts.methylated <- -diff(c(data.dedup$meth.sum, 0))
#' data.dedup$methylated <- NULL
#' data.dedup$mask.dup <- NULL
#' data.dedup$unmeth.sum <- NULL
#' data.dedup$meth.sum <- NULL
#' data.dedups[[length(data.dedups)+1]] <- data.dedup
#' stopTimedMessage(ptm)
#'
#' ## Merging counts from data objects
#' if (length(data.dedups) == 2) {
#' ptm <- startTimedMessage("Merging counts ...")
#' data <- unlist(data.dedups, use.names=FALSE)
#' data <- sort(data)
#' rm(data.dedups)
#' data$mask.dup <- c(FALSE, as.logical(data@seqnames[-1] == data@seqnames[-length(data)])) & c(FALSE, as.logical(data@ranges@start[-1] == data@ranges@start[-length(data)]))
#' data$unmeth.sum <- rev(cumsum(rev(data$counts.unmethylated)))
#' data$meth.sum <- rev(cumsum(rev(data$counts.methylated)))
#' data.dedup <- data[!data$mask.dup]
#' rm(data)
#' data.dedup$counts.unmethylated <- -diff(c(data.dedup$unmeth.sum, 0))
#' data.dedup$counts.methylated <- -diff(c(data.dedup$meth.sum, 0))
#' data.dedup$mask.dup <- NULL
#' data.dedup$unmeth.sum <- NULL
#' data.dedup$meth.sum <- NULL
#' data.dedups <- GRangesList(data.dedup)
#' stopTimedMessage(ptm)
#' }
#'
#' }
#' data <- data.dedups[[1]]
#' rm(data.dedups, data.dedup)
#'
#' ## Assign seqlengths
#' if (!is.null(chrom.lengths)) {
#' if (is.character(chrom.lengths)) {
#' df <- tryCatch({
#' df <- data.table::fread(chrom.lengths, header=TRUE)
#' }, error = function(err) {
#' df <- utils::read.table(chrom.lengths, header=TRUE)
#' })
#' } else if (is.data.frame(chrom.lengths)) {
#' df <- chrom.lengths
#' }
#' chrom.lengths <- df[,2]
#' names(chrom.lengths) <- df[,1]
#' # Filter by chromosomes supplied in chrom.lengths
#' data <- keepSeqlevels(data, seqlevels(data)[seqlevels(data) %in% names(chrom.lengths)])
#' seqlengths(data) <- chrom.lengths[names(seqlengths(data))]
#' }
#'
#' ## Make factors
#' data$context <- factor(data$context)
#'
#' return(data)
#' }
#'
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.