#' Call methylation status
#'
#' Call methylation status of cytosines (or bins) with a separate Hidden Markov Model for each context.
#'
#' The Hidden Markov model uses a binomial test for the emission densities. Transition probabilities are modeled with a distance dependent decay, specified by the parameter \code{transDist}.
#'
#' @inheritParams callMethylation
#' @return A \code{\link{methimputeBinomialHMM}} object.
#'
#' @export
#' @examples
#'## Get some toy data
#'file <- system.file("data","arabidopsis_toydata.RData", package="methimpute")
#'data <- get(load(file))
#'print(data)
#'model <- callMethylationSeparate(data)
#'print(model)
#'
callMethylationSeparate <- function(data, fit.on.chrom=NULL, transDist=Inf, eps=1, max.time=Inf, max.iter=Inf, count.cutoff=500, verbosity=1, num.threads=2+include.intermediate, initial.params=NULL, include.intermediate=FALSE, update='independent', min.reads=0) {
## Variables
contexts <- intersect(levels(data$context), unique(data$context))
transitionContexts <- paste(contexts, contexts, sep='-')
if (!include.intermediate) {
states <- c('Unmethylated', 'Methylated')
} else {
states <- c('Unmethylated', 'Intermediate', 'Methylated')
}
transDistvec <- rep(Inf, length(transitionContexts))
names(transDistvec) <- transitionContexts
if (is.null(names(transDist))) {
transDistvec[1:length(transDistvec)] <- transDist
} else {
if (any(! names(transDist) %in% names(transDistvec))) {
stop("Names of 'transDist' must be ", paste0(names(transDistvec), collapse=', '), ".")
}
transDistvec[names(transDist)] <- transDist
rev.names <- sapply(strsplit(names(transDist), '-'), function(x) { paste0(rev(x), collapse = '-')})
transDistvec[rev.names] <- transDist
}
## Prepare adding of meta-data columns
data$distance <- numeric(length(data))
data$transitionContext <- factor(NA, levels=transitionContexts)
data$posteriorMax <- numeric(length(data))
data$posteriorMeth <- numeric(length(data))
data$posteriorUnmeth <- numeric(length(data))
data$status <- factor(NA, levels=states)
data$rc.meth.lvl <- numeric(length(data))
# data$rc.counts <- data$counts
cmodels <- list()
for (context in contexts) {
messageU("Running context ", context, underline = '-', overline = '-')
context.mask <- data$context == context
cdata <- data[context.mask]
cmodel <- callMethylation(cdata, fit.on.chrom=fit.on.chrom, transDist=transDistvec[paste0(context, '-', context)], eps=eps, max.time=max.time, max.iter=max.iter, count.cutoff=count.cutoff, verbosity=verbosity, num.threads=num.threads, initial.params=initial.params, include.intermediate=include.intermediate, update=update, min.reads=min.reads)
data$distance[context.mask] <- cmodel$data$distance
data$transitionContext[context.mask] <- cmodel$data$transitionContext
data$posteriorMax[context.mask] <- cmodel$data$posteriorMax
data$posteriorMeth[context.mask] <- cmodel$data$posteriorMeth
data$posteriorUnmeth[context.mask] <- cmodel$data$posteriorUnmeth
data$status[context.mask] <- cmodel$data$status
data$rc.meth.lvl[context.mask] <- cmodel$data$rc.meth.lvl
# data$rc.counts[context.mask,] <- cmodel$data$rc.counts
cmodel$data <- NULL
cmodel$segments <- NULL
cmodels[[context]] <- cmodel
}
### Construct result object ###
messageU("Combining contexts ", paste0(contexts, collapse=', '), underline = '-', overline = '-')
ptm <- startTimedMessage("Compiling results ...")
r <- list()
class(r) <- "methimputeBinomialHMM"
## Convergence info
convergenceInfo <- list()
convergenceInfo$logliks <- lapply(cmodels, function(x) { x$convergenceInfo$logliks })
convergenceInfo$dlogliks <- lapply(cmodels, function(x) { x$convergenceInfo$dlogliks })
convergenceInfo$parameterInfo <- lapply(cmodels, function(x) { x$convergenceInfo$parameterInfo })
convergenceInfo$time <- lapply(cmodels, function(x) { x$convergenceInfo$time })
r$convergenceInfo <- convergenceInfo
## Parameters
params <- list()
params$startProbs <- lapply(cmodels, function(x) { x$params$startProbs })
params$transProbs <- lapply(cmodels, function(x) { x$params$transProbs[[1]] })
names(params$transProbs) <- unlist(lapply(cmodels, function(x) { names(x$params$transProbs) }))
params$transDist <- unlist(lapply(cmodels, function(x) { x$params$transDist }))
names(params$transDist) <- unlist(lapply(cmodels, function(x) { names(x$params$transDist) }))
params$emissionParams <- list()
for (state in states) {
params$emissionParams[[state]] <- array(unlist(lapply(cmodels, function(x) { x$params$emissionParams[[state]] })), dim=c(length(contexts), 1), dimnames=list(contexts, 'prob'))
}
params$count.cutoff <- count.cutoff
params$weights <- lapply(cmodels, function(x) { x$params$weights[[1]] })
r$params <- params
## Parameters initial
params.initial <- cmodels[[1]]$params.initial
params.initial$startProbs_initial <- lapply(cmodels, function(x) { x$params.initial$startProbs_initial })
params.initial$transProbs_initial <- lapply(cmodels, function(x) { x$params.initial$transProbs_initial[[1]] })
names(params.initial$transProbs_initial) <- unlist(lapply(cmodels, function(x) { names(x$params.initial$transProbs_initial) }))
params.initial$emissionParams_initial <- list()
for (state in states) {
params.initial$emissionParams_initial[[state]] <- array(unlist(lapply(cmodels, function(x) { x$params.initial$emissionParams_initial[[state]] })), dim=c(length(contexts), 1), dimnames=list(contexts, 'prob'))
}
params.initial$transDist <- unlist(lapply(cmodels, function(x) { x$params.initial$transDist }))
names(params.initial$transDist) <- unlist(lapply(cmodels, function(x) { names(x$params.initial$transDist) }))
r$params.initial <- params.initial
## Segmentation
data.collapse <- data
mcols(data.collapse) <- NULL
data.collapse$status <- data$status
df <- suppressMessages( collapseBins(as.data.frame(data.collapse), column2collapseBy = 'status') )
segments <- methods::as(df, 'GRanges')
seqlengths(segments) <- seqlengths(data)[seqlevels(segments)]
## Data and segments
r$data <- data
r$segments <- segments
stopTimedMessage(ptm)
return(r)
}
#' Call methylation status
#'
#' Call methylation status of cytosines (or bins) with a Hidden Markov Model.
#'
#' The Hidden Markov model uses a binomial test for the emission densities. Transition probabilities are modeled with a distance dependent decay, specified by the parameter \code{transDist}.
#'
#' @param data A \code{\link{methimputeData}} object.
#' @param fit.on.chrom A character vector specifying the chromosomes on which the HMM will be fitted.
#' @param transDist The decaying constant for the distance-dependent transition matrix. Either a single numeric or a named numeric vector, where the vector names correspond to the transition contexts. Such a vector can be obtained from \code{\link{estimateTransDist}}.
#' @param eps Convergence threshold for the Baum-Welch algorithm.
#' @param max.time Maximum running time in seconds for the Baum-Welch algorithm.
#' @param max.iter Maximum number of iterations for the Baum-Welch algorithm.
#' @param count.cutoff A cutoff for the counts to remove artificially high counts from mapping artifacts. Set to \code{Inf} to disable this filtering (not recommended).
#' @param verbosity An integer from 1 to 5 specifying the verbosity of the fitting procedure. Values > 1 are only for debugging.
#' @param num.threads Number of CPU to use for the computation. Parallelization is implemented on the number of states, which is 2 or 3, so setting \code{num.threads > 3} will not give additional performance increase.
#' @param initial.params A \code{\link{methimputeBinomialHMM}} object. This parameter is useful to continue the fitting procedure for a \code{\link{methimputeBinomialHMM}} object.
#' @param include.intermediate A logical specifying wheter or not the intermediate component should be included in the HMM.
#' @param update One of \code{c("independent", "constrained")}. If \code{update="independent"} probability parameters for the binomial test will be updated independently. If \code{update="constrained"} the probability parameter of the intermediate component will be constrained to the mean of the unmethylated and the methylated component.
#' @param min.reads The minimum number of reads that a position must have to contribute in the Baum-Welch fitting procedure.
#' @return A \code{\link{methimputeBinomialHMM}} object.
#'
#' @export
#' @examples
#'## Get some toy data
#'file <- system.file("data","arabidopsis_toydata.RData", package="methimpute")
#'data <- get(load(file))
#'print(data)
#'model <- callMethylation(data)
#'print(model)
callMethylation <- function(data, fit.on.chrom=NULL, transDist=Inf, eps=1, max.time=Inf, max.iter=Inf, count.cutoff=500, verbosity=1, num.threads=2+include.intermediate, initial.params=NULL, include.intermediate=FALSE, update='independent', min.reads=0) {
### Input checks ###
if (!is.null(fit.on.chrom)) {
if (!fit.on.chrom %in% seqlevels(data)) {
stop("Cannot find 'fit.on.chrom' = ", fit.on.chrom, " in the data.")
}
}
### Assign variables ###
update <- factor(update, levels=c('independent', 'constrained'))
if (is.na(update)) { stop("Argument 'update' must be one of c('independent', 'constrained').") }
contexts <- intersect(levels(data$context), unique(data$context))
ncontexts <- length(contexts)
if (!include.intermediate) {
states <- c('Unmethylated', 'Methylated')
} else {
states <- c('Unmethylated', 'Intermediate', 'Methylated')
}
numstates <- length(states)
counts <- data$counts
### Add distance and transition context to bins ###
data$distance <- addDistance(data)
data$transitionContext <- addTransitionContext(data)
# Assign variables
transitionContexts <- levels(data$transitionContext)
transDistvec <- rep(Inf, length(transitionContexts))
names(transDistvec) <- transitionContexts
if (is.null(names(transDist))) {
transDistvec[1:length(transDistvec)] <- transDist
} else {
if (any(! names(transDist) %in% names(transDistvec))) {
stop("Names of 'transDist' must be ", paste0(names(transDistvec), collapse=', '), ".")
}
transDistvec[names(transDist)] <- transDist
rev.names <- sapply(strsplit(names(transDist), '-'), function(x) { paste0(rev(x), collapse = '-')})
transDistvec[rev.names] <- transDist
}
distances <- data$distance
context <- factor(data$context, levels=contexts)
transitionContext <- factor(data$transitionContext, levels=transitionContexts)
## Filter counts by cutoff
mask <- counts[,'total'] > count.cutoff
counts[mask,] <- round(sweep(x = counts[mask,, drop=FALSE], MARGIN = 1, STATS = counts[mask,'total', drop=FALSE]/count.cutoff, FUN = '/'))
data$counts <- counts # assign it now to have filtered values in there
## Subset by chromosomes
if (!is.null(fit.on.chrom)) {
mask <- as.logical(data@seqnames %in% fit.on.chrom)
counts <- counts[mask,]
context <- context[mask]
transitionContext <- transitionContext[mask]
distances <- distances[mask]
}
### Initial probabilities ###
if (is.null(initial.params)) {
transProbs_initial <- list()
for (context.transition in transitionContexts) {
s <- 0.9
transProbs_initial[[context.transition]] <- matrix((1-s)/(numstates-1), ncol=numstates, nrow=numstates, dimnames=list(from=states, to=states))
diag(transProbs_initial[[context.transition]]) <- s
}
startProbs_initial <- rep(1/numstates, numstates)
names(startProbs_initial) <- states
### Initialization of emission distributions ###
ep <- list()
probUN.start <- 0.01
probM.start <- 0.9
if (!include.intermediate) {
probs <- rep(probUN.start, ncontexts)
names(probs) <- contexts
ep[[states[1]]] <- data.frame(prob=probs)
probs <- rep(probM.start, ncontexts)
names(probs) <- contexts
ep[[states[2]]] <- data.frame(prob=probs)
} else {
probs <- rep(probUN.start, ncontexts)
names(probs) <- contexts
ep[[states[1]]] <- data.frame(prob=probs)
probs <- rep(0.5*(probUN.start+probM.start), ncontexts)
names(probs) <- contexts
ep[[states[2]]] <- data.frame(prob=probs)
probs <- rep(probM.start, ncontexts)
names(probs) <- contexts
ep[[states[3]]] <- data.frame(prob=probs)
}
names(ep) <- states
emissionParams_initial <- ep
} else {
model.init <- loadFromFiles(initial.params, check.class='methimputeBinomialHMM')[[1]]
transProbs_initial <- model.init$params$transProbs
startProbs_initial <- model.init$params$startProbs
emissionParams_initial <- model.init$params$emissionParams
}
### Define parameters for C function ###
params <- list()
params$startProbs_initial <- startProbs_initial
params$transProbs_initial <- transProbs_initial
params$emissionParams_initial <- emissionParams_initial
params$transDist <- transDistvec
params$eps <- eps
params$maxtime <- max.time
params$maxiter <- max.iter
params$minreads <- min.reads
params$verbosity <- verbosity
params$numThreads <- num.threads
### Call the C function ###
on.exit(cleanup())
if (is.null(fit.on.chrom)) {
ptm <- startTimedMessage("Baum-Welch: Fitting HMM parameters\n")
hmm <- fitBinomialTestHMMcontextTransition(counts_total=counts[,'total'], counts_meth=counts[,'methylated'], context=as.integer(context)-1, transitionContext=as.integer(transitionContext)-1, distances=distances, params=params, algorithm=1, update_procedure=update)
message("Time spent in Baum-Welch:", appendLF=FALSE)
stopTimedMessage(ptm)
if (hmm$error == "") {
## Cast convergence info
parray <- array(NA, dim=c(length(contexts), length(hmm$convergenceInfo$logliks), length(states)), dimnames=list(context=contexts, iteration=0:(length(hmm$convergenceInfo$logliks)-1), status=states))
parray[,,'Unmethylated'] <- hmm$convergenceInfo$parameterInfo$probsUN
parray[,,'Methylated'] <- hmm$convergenceInfo$parameterInfo$probsM
if ('Intermediate' %in% states) {
parray[,,'Intermediate'] <- (parray[,,'Unmethylated'] + parray[,,'Methylated']) / 2
}
convergenceInfo <- hmm$convergenceInfo
convergenceInfo$parameterInfo <- parray[,-1,, drop=FALSE]
convergenceInfo$logliks <- convergenceInfo$logliks[-1]
convergenceInfo$dlogliks <- convergenceInfo$dlogliks[-1]
}
} else {
ptm <- startTimedMessage("Baum-Welch: Fitting HMM parameters\n")
message(" ... on chromosomes ", paste0(fit.on.chrom, collapse=', '))
hmm <- fitBinomialTestHMMcontextTransition(counts_total=counts[,'total'], counts_meth=counts[,'methylated'], context=as.integer(context)-1, transitionContext=as.integer(transitionContext)-1, distances=distances, params=params, algorithm=1, update_procedure=update)
message("Time spent in Baum-Welch:", appendLF=FALSE)
stopTimedMessage(ptm)
if (hmm$error == "") {
## Cast convergence info
convergenceInfo <- list(prefit=list(), fit=list())
convergenceInfo$prefit$fit.on.chrom <- fit.on.chrom
parray <- array(NA, dim=c(length(contexts), length(hmm$convergenceInfo$logliks), length(states)), dimnames=list(context=contexts, iteration=0:(length(hmm$convergenceInfo$logliks)-1), status=states))
parray[,,'Unmethylated'] <- hmm$convergenceInfo$parameterInfo$probsUN
parray[,,'Methylated'] <- hmm$convergenceInfo$parameterInfo$probsM
if ('Intermediate' %in% states) {
parray[,,'Intermediate'] <- (parray[,,'Unmethylated'] + parray[,,'Methylated']) / 2
}
convergenceInfo$prefit <- hmm$convergenceInfo
convergenceInfo$prefit$parameterInfo <- parray[,-1,, drop=FALSE]
convergenceInfo$prefit$logliks <- convergenceInfo$prefit$logliks[-1]
convergenceInfo$prefit$dlogliks <- convergenceInfo$prefit$dlogliks[-1]
## Redo for all chromosomes
counts <- data$counts
context <- data$context
transitionContext <- data$transitionContext
distances <- data$distance
params2 <- list()
params2$startProbs_initial <- hmm$startProbs
params2$transProbs_initial <- hmm$transProbs
params2$emissionParams_initial <- hmm$emissionParams
params2$transDist <- transDistvec
params2$eps <- eps
params2$maxtime <- max.time
params2$maxiter <- max.iter
params2$minreads <- min.reads
params2$verbosity <- verbosity
params2$numThreads <- num.threads
ptm <- startTimedMessage("Forward-Backward: Obtaining state sequence - no updates\n")
message(" ... on all chromosomes")
hmm <- fitBinomialTestHMMcontextTransition(counts_total=counts[,'total'], counts_meth=counts[,'methylated'], context=as.integer(context)-1, transitionContext=as.integer(transitionContext)-1, distances=distances, params=params2, algorithm=2, update_procedure=update)
message("Time spent in Forward-Backward:", appendLF=FALSE)
stopTimedMessage(ptm)
## Cast convergence info
convergenceInfo$fit <- hmm$convergenceInfo
}
}
### Construct result object ###
ptm <- startTimedMessage("Compiling results ...")
r <- list()
class(r) <- "methimputeBinomialHMM"
if (hmm$error == "") {
r$convergenceInfo <- convergenceInfo
names(hmm$weights) <- states
r$params <- list(startProbs=hmm$startProbs, transProbs=hmm$transProbs, transDist=hmm$transDist, emissionParams=hmm$emissionParams, count.cutoff=count.cutoff)
r$params.initial <- params
# States and posteriors
rownames(hmm$posteriors) <- states
data$posteriorMax <- NA
for (i1 in 0:(nrow(hmm$posteriors)-1)) {
mask <- hmm$states == i1
data$posteriorMax[mask] <- hmm$posteriors[i1+1,mask]
}
data$posteriorMeth <- hmm$posteriors["Methylated",]
data$posteriorUnmeth <- hmm$posteriors["Unmethylated",]
data$status <- factor(states, levels=states)[hmm$states+1]
# Recalibrated methylation levels
data.context <- as.character(data$context)
if (include.intermediate) {
data$rc.meth.lvl <- r$params$emissionParams$Unmethylated[data.context,] * data$posteriorUnmeth + r$params$emissionParams$Intermediate[data.context,] * (1 - data$posteriorMeth - data$posteriorUnmeth) + r$params$emissionParams$Methylated[data.context,] * data$posteriorMeth
} else {
data$rc.meth.lvl <- r$params$emissionParams$Unmethylated[data.context,] * data$posteriorUnmeth + r$params$emissionParams$Methylated[data.context,] * data$posteriorMeth
}
# ## Recalibrated counts
# data$rc.counts <- data$counts
# data$rc.counts[,2] <- sort(data$counts[,2])[rank(data$posteriorMax, ties.method = 'first')]
# data$rc.counts[,1] <- round(data$rc.counts[,2] * data$rc.meth.lvl)
## Segmentation
data.collapse <- data
mcols(data.collapse) <- NULL
data.collapse$status <- data$status
df <- suppressMessages( collapseBins(as.data.frame(data.collapse), column2collapseBy = 'status') )
segments <- methods::as(df, 'GRanges')
seqlengths(segments) <- seqlengths(data)[seqlevels(segments)]
## Context-dependent weights
r$params$weights <- list()
for (context in contexts) {
r$params$weights[[context]] <- rowMeans(hmm$posteriors[,data$context==context])
}
} else {
warning("Baum-Welch aborted: ", hmm$error)
}
r$data <- data
r$segments <- segments
stopTimedMessage(ptm)
return(r)
}
#' Call methylation status
#'
#' Call methylation status of cytosines (or bins) with a binomial test.
#'
#' The function uses a binomial test with the specified \code{conversion.rate}. P-values are then multiple testing corrected with the Benjamini & Yekutieli procedure. Methylated positions are selected with the \code{p.threshold}.
#'
#' @param data A \code{\link{methimputeData}} object.
#' @param conversion.rate A conversion rate between 0 and 1.
#' @param min.coverage Minimum coverage to consider for the binomial test.
#' @param p.threshold Significance threshold between 0 and 1.
#' @return A vector with methylation statuses.
#' @importFrom stats p.adjust pbinom
#' @export
#'
#' @examples
#'## Get some toy data
#'file <- system.file("data","arabidopsis_toydata.RData", package="methimpute")
#'data <- get(load(file))
#'data$binomial <- binomialTestMethylation(data, conversion.rate=0.998)
#'
binomialTestMethylation <- function(data, conversion.rate, min.coverage=3, p.threshold=0.05) {
p <- stats::pbinom(q = data$counts[,'methylated']-1, size = data$counts[,'total'], prob = conversion.rate, lower.tail = FALSE)
p[data$counts[,'total'] < min.coverage] <- NA
p <- stats::p.adjust(p, method = 'BY')
levels <- c("Unmethylated", "Methylated")
methylated <- factor(levels[c(1,2)][(p <= p.threshold)+1], levels=levels)
return(methylated)
}
#' #' Make a multivariate segmentation
#' #'
#' #' Make a multivariate segmentation by fitting the transition probabilities of a multivariate Hidden Markov Model.
#' #'
#' #' The function will use the provided univariate Hidden Markov Models (HMMs) to build the multivariate emission density. Number of states are also taken from the combination of univaraite HMMs.
#' #'
#' #' @return A list with fitted parameters, posteriors.
#' multivariateSegmentation <- function(models, ID, fit.on.chrom=NULL, transDist=700, eps=0.01, max.time=Inf, max.iter=Inf, max.states=Inf, verbosity=1, num.threads=1) {
#'
#' ### Input checks ###
#' if (is.null(max.time)) {
#' max.time <- Inf
#' }
#' if (is.null(max.iter)) {
#' max.iter <- Inf
#' }
#' ID.check <- ID
#'
#' ### Assign variables ###
#' models <- loadFromFiles(models, check.class = 'NcomponentHMM')
#' components <- lapply(models, function(model) { levels(model$data$state) })
#' statedef <- permute(components)
#' # Data object
#' data <- models[[1]]$data
#' mcols(data) <- NULL
#' data$distance <- models[[1]]$data$distance
#'
#' ### Prepare the multivariate ###
#' messageU("Multivariate HMM: preparing fitting procedure", underline="=", overline="=")
#' cormat <- prepareMultivariate(data=models[[1]]$data, hmms=models, statedef=statedef, max.states=max.states)
#' data$observable <- cormat$observable
#' statenames <- cormat$mapping
#' statenames <- lapply(strsplit(statenames, ' '), function(x) { paste(paste0(names(models), "=", x), collapse=" ") })
#' numstates <- length(statenames)
#' statedef <- cormat$statedef
#'
#' ### Initial probabilities ###
#' s <- 0.9
#' transProbs_initial <- matrix((1-s)/(numstates-1), ncol=numstates, nrow=numstates, dimnames=list(from=statenames, to=statenames))
#' diag(transProbs_initial) <- s
#' startProbs_initial <- rep(1/numstates, numstates)
#' names(startProbs_initial) <- statenames
#'
#' ### Define parameters for C function ###
#' params <- list()
#' params$startProbs_initial <- startProbs_initial
#' params$transProbs_initial <- transProbs_initial
#' params$emissionParamsList <- cormat$emissionParams
#' params$transDist <- transDist
#' params$eps <- eps
#' params$maxtime <- max.time
#' params$maxiter <- max.iter
#' params$verbosity <- verbosity
#' params$numThreads <- num.threads
#' params$correlationMatrixInverse <- cormat$correlationMatrixInverse
#' params$determinant <- cormat$determinant
#' params$statedef <- cormat$statedef
#'
#' ### Fit the HMM ###
#' message("Baum-Welch: Fitting parameters for multivariate HMM")
#' on.exit(cleanup())
#' hmm <- fitMultiHMM(data$observable, data$distance, params)
#'
#' ### Construct result object ###
#' ptm <- startTimedMessage("Compiling results ...")
#' r <- list()
#' class(r) <- 'NcomponentMultiHMM'
#' r$ID <- ID
#' if (hmm$error == "") {
#' r$convergenceInfo <- hmm$convergenceInfo
#' names(hmm$weights) <- statenames
#' r$params <- list(startProbs=hmm$startProbs, transProbs=hmm$transProbs, transDist=hmm$transDist, emissionParamsList=params$emissionParamsList, weights=hmm$weights)
#' r$params.initial <- params
#' # States and posteriors
#' data$posteriorMax <- NA
#' for (i1 in 0:(nrow(hmm$posteriors)-1)) {
#' mask <- hmm$states == i1
#' data$posteriorMax[mask] <- hmm$posteriors[i1+1,mask]
#' }
#' rownames(hmm$posteriors) <- statenames
#' data$posteriors <- t(hmm$posteriors)
#' data$state <- factor(statenames, levels=statenames)[hmm$states+1]
#' ## Make segmentation
#' df <- as.data.frame(data)
#' df <- df[, c(names(df)[1:5], 'state')]
#' segments <- suppressMessages( collapseBins(df, column2collapseBy = 'state') )
#' segments <- methods::as(segments, 'GRanges')
#' seqlevels(segments) <- seqlevels(data)
#' seqlengths(segments) <- seqlengths(data)[seqlevels(segments)]
#' }
#' r$segments <- segments
#' r$data <- data
#' stopTimedMessage(ptm)
#'
#' return(r)
#' }
#'
#' #' Fit a two-component HMM
#' #'
#' #' Fit a two-component Hidden Markov Model to the supplied counts. The transition matrix is distance-dependent with exponential decaying constant \code{transDist}. Components are modeled as negative binomial distributions.
#' #'
#' #' @param data A \code{\link[GenomicRanges]{GRanges-class}} object with metadata column 'counts' (or any other column specified as \code{observable}).
#' #' @param observable A character naming the metadata column of \code{data} that will serve as observable for the HMM.
#' #' @param fit.on.chrom A character vector giving the chromosomes on which the HMM will be fitted.
#' #' @param transDist The exponential decaying constant for the distance-dependent transition matrix. Should be given in the same units as \code{distances}.
#' #' @param eps Convergence threshold for the Baum-Welch algorithm.
#' #' @param max.time Maximum running time in seconds for the Baum-Welch algorithm.
#' #' @param max.iter Maximum number of iterations for the Baum-Welch algorithm.
#' #' @param count.cutoff A cutoff for the \code{observable}. Lower cutoffs will speed up the fitting procedure and improve convergence in some cases. Set to \code{Inf} to disable this filtering.
#' #' @param verbosity Integer from c(0,1) specifying the verbosity of the fitting procedure.
#' #' @param num.threads Number of CPU to use for the computation.
#' #' @return A list with fitted parameters, posteriors, and the input parameters.
#' #'
#' fitSignalBackground <- function(data, observable='counts', fit.on.chrom=NULL, transDist=700, eps=0.01, max.time=Inf, max.iter=Inf, cutoff=1000, verbosity=1, num.threads=1) {
#'
#' ### Input checks ###
#' if (is.null(max.time)) {
#' max.time <- Inf
#' }
#' if (is.null(max.iter)) {
#' max.iter <- Inf
#' }
#'
#' ### Add distance to bins ###
#' data$distance <- addDistance(data)
#'
#' ### Assign variables ###
#' states <- c("background", "signal")
#' numstates <- length(states)
#' counts <- mcols(data)[,observable]
#' counts <- as.matrix(counts)
#' distances <- data$distance
#'
#' ## Filter counts by cutoff
#' mask <- counts[,'total'] > count.cutoff
#' counts[mask,] <- round(sweep(x = counts[mask,], MARGIN = 1, STATS = counts[mask,'total']/count.cutoff, FUN = '/'))
#' data$observable <- counts # assign it now to have filtered values in there
#' colnames(data$observable) <- observable
#'
#' ## Subset by chromosomes
#' if (!is.null(fit.on.chrom)) {
#' counts <- counts[as.logical(data@seqnames %in% fit.on.chrom)]
#' }
#'
#' ### Initial probabilities ###
#' s <- 0.9
#' transProbs_initial <- matrix((1-s)/(numstates-1), ncol=numstates, nrow=numstates, dimnames=list(from=states, to=states))
#' diag(transProbs_initial) <- s
#' startProbs_initial <- rep(1/numstates, numstates)
#' names(startProbs_initial) <- states
#'
#' ### Initialization of emission distributions ###
#' counts.greater.0 <- counts[counts>0]
#' mean.counts <- mean(counts.greater.0)
#' var.counts <- var(counts.greater.0)
#' ep <- list()
#' ep[["background"]] <- data.frame(type='dnbinom', mu=mean.counts, var=var.counts)
#' ep[["signal"]] <- data.frame(type='dnbinom', mu=mean.counts*1.5, var=var.counts*2)
#' ep <- do.call(rbind, ep)
#' # Make sure variance is bigger than mean for negative binomial
#' ep$var[ep$mu >= ep$var] <- ep$mu[ep$mu >= ep$var] + 1
#' ep$size <- dnbinom.size(ep$mu, ep$var)
#' ep$prob <- dnbinom.prob(ep$mu, ep$var)
#' emissionParams_initial <- ep
#'
#' ### Define parameters for C function ###
#' params <- list()
#' params$startProbs_initial <- startProbs_initial
#' params$transProbs_initial <- transProbs_initial
#' params$emissionParams_initial <- emissionParams_initial
#' params$transDist <- transDist
#' params$eps <- eps
#' params$maxtime <- max.time
#' params$maxiter <- max.iter
#' params$verbosity <- verbosity
#' params$numThreads <- num.threads
#'
#' ### Call the C function ###
#' on.exit(cleanup())
#' if (is.null(fit.on.chrom)) {
#' ptm <- startTimedMessage("Baum-Welch: Fitting HMM parameters\n")
#' hmm <- fitHMM(counts=counts, distances=distances, params=params, algorithm=1)
#' message("Time spent in Baum-Welch:", appendLF=FALSE)
#' stopTimedMessage(ptm)
#' } else {
#' ptm <- startTimedMessage("Baum-Welch: Fitting HMM parameters\n")
#' message(" ... on chromosomes ", paste0(fit.on.chrom, collapse=', '))
#' hmm <- fitHMM(counts=counts, distances=distances, params=params, algorithm=1)
#' message("Time spent in Baum-Welch:", appendLF=FALSE)
#' stopTimedMessage(ptm)
#' counts <- as.integer(data$observable)
#' params2 <- list()
#' params2$startProbs_initial <- hmm$startProbs
#' params2$transProbs_initial <- hmm$transProbs
#' params2$emissionParams_initial <- hmm$emissionParams
#' params2$transDist <- transDist
#' params2$eps <- eps
#' params2$maxtime <- max.time
#' params2$maxiter <- max.iter
#' params2$verbosity <- verbosity
#' params2$numThreads <- num.threads
#' ptm <- startTimedMessage("Viterbi: Obtaining state sequence\n")
#' message(" ... on all chromosomes")
#' hmm <- fitHMM(counts=counts, distances=distances, params=params2, algorithm=2)
#' message("Time spent in Viterbi:", appendLF=FALSE)
#' stopTimedMessage(ptm)
#' }
#'
#' ### Construct result object ###
#' ptm <- startTimedMessage("Compiling results ...")
#' r <- list()
#' if (hmm$error == "") {
#' r$convergenceInfo <- hmm$convergenceInfo
#' names(hmm$weights) <- states
#' r$params <- list(startProbs=hmm$startProbs, transProbs=hmm$transProbs, transDist=hmm$transDist, emissionParams=hmm$emissionParams, weights=hmm$weights)
#' r$params.initial <- params
#' # States and posteriors
#' data$posteriorMax <- NA
#' for (i1 in 0:(nrow(hmm$posteriors)-1)) {
#' mask <- hmm$states == i1
#' data$posteriorMax[mask] <- hmm$posteriors[i1+1,mask]
#' }
#' rownames(hmm$posteriors) <- states
#' data$posteriors <- t(hmm$posteriors)
#' data$state <- factor(states, levels=states)[hmm$states+1]
#' }
#' r$data <- data
#' stopTimedMessage(ptm)
#'
#' return(r)
#' }
#' #' Fit an n-component HMM
#' #'
#' #' Fit an n-component Hidden Markov Model to the supplied counts. The transition matrix is distance-dependent with exponential decaying constant \code{transDist} (only relevant in non-consecutive bins). The zero-th component is a delta distribution to account for empty bins, and all other n-components are modeled as negative binomial distributions.
#' #'
#' #' @param data A \code{\link[GenomicRanges]{GRanges-class}} object with metadata columns 'distance' and 'counts' (or any other column specified as \code{observable}).
#' #' @param states An integer vector giving the states for the Hidden Markov Model. State '0' will be modeled by a delta distribution, all other states ('1','2','3',...) with negative binomial distributions.
#' #' @param observable A character naming the column of \code{data} that will serve as observable for the HMM.
#' #' @param fit.on.chrom A character vector giving the chromosomes on which the HMM will be fitted.
#' #' @param transDist The exponential decaying constant for the distance-dependent transition matrix. Should be given in the same units as \code{distances}.
#' #' @param eps Convergence threshold for the Baum-Welch algorithm.
#' #' @param max.time Maximum running time in seconds for the Baum-Welch algorithm.
#' #' @param max.iter Maximum number of iterations for the Baum-Welch algorithm.
#' #' @param count.cutoff A cutoff for the \code{observable}. Lower cutoffs will speed up the fitting procedure and improve convergence in some cases. Set to \code{Inf} to disable this filtering.
#' #' @param verbosity Integer from c(0,1) specifying the verbosity of the fitting procedure.
#' #' @param num.threads Number of CPU to use for the computation.
#' #' @param initial.params An \code{\link{NcomponentHMM}} or a file that contains such an object. Parameters from this model will be used for initialization of the fitting procedure.
#' #' @return A list with fitted parameters, posteriors, and the input parameters.
#' #'
#' fitNComponentHMM <- function(data, states=0:5, observable='counts', fit.on.chrom=NULL, transDist=700, eps=0.01, max.time=Inf, max.iter=Inf, count.cutoff=500, verbosity=1, num.threads=1, initial.params=NULL) {
#'
#' ### Input checks ###
#' if (is.null(max.time)) {
#' max.time <- Inf
#' }
#' if (is.null(max.iter)) {
#' max.iter <- Inf
#' }
#'
#' ### Add distance to bins ###
#' data$distance <- addDistance(data)
#'
#' ### Assign variables ###
#' numstates <- length(states)
#' counts <- mcols(data)[,observable]
#' distances <- data$distance
#' data$observable <- counts
#'
#' ## Subset by chromosomes
#' if (!is.null(fit.on.chrom)) {
#' counts <- counts[as.logical(data@seqnames %in% fit.on.chrom)]
#' }
#'
#' ### Initial probabilities ###
#' if (is.null(initial.params)) {
#' s <- 0.9
#' transProbs_initial <- matrix((1-s)/(numstates-1), ncol=numstates, nrow=numstates, dimnames=list(from=states, to=states))
#' diag(transProbs_initial) <- s
#' startProbs_initial <- rep(1/numstates, numstates)
#' names(startProbs_initial) <- states
#'
#' ### Initialization of emission distributions ###
#' counts.greater.0 <- counts[counts>0]
#' mean.counts <- mean(counts.greater.0)
#' var.counts <- var(counts.greater.0)
#' ep <- list()
#' for (state in setdiff(states,0)) {
#' ep[[as.character(state)]] <- data.frame(type='dnbinom', mu=mean.counts*state/2, var=var.counts*state/2)
#' }
#' ep <- do.call(rbind, ep)
#' # Make sure variance is bigger than mean for negative binomial
#' ep$var[ep$mu >= ep$var] <- ep$mu[ep$mu >= ep$var] + 1
#' ep$size <- dnbinom.size(ep$mu, ep$var)
#' ep$prob <- dnbinom.prob(ep$mu, ep$var)
#' ## Add zero-inflation
#' if (0 %in% states) {
#' ep <- rbind(data.frame(type='delta', mu=0, var=0, size=NA, prob=NA), ep)
#' }
#' rownames(ep) <- states
#' emissionParams_initial <- ep
#' } else {
#' model.init <- loadFromFiles(initial.params, check.class='NcomponentHMM')[[1]]
#' transProbs_initial <- model.init$params$transProbs
#' startProbs_initial <- model.init$params$startProbs
#' emissionParams_initial <- model.init$params$emissionParams
#' }
#'
#' ### Define parameters for C function ###
#' params <- list()
#' params$startProbs_initial <- startProbs_initial
#' params$transProbs_initial <- transProbs_initial
#' params$emissionParams_initial <- emissionParams_initial
#' params$transDist <- transDist
#' params$eps <- eps
#' params$maxtime <- max.time
#' params$maxiter <- max.iter
#' params$verbosity <- verbosity
#' params$numThreads <- num.threads
#'
#' ### Call the C function ###
#' on.exit(cleanup())
#' if (is.null(fit.on.chrom)) {
#' ptm <- startTimedMessage("Baum-Welch: Fitting HMM parameters\n")
#' hmm <- fitHMM(counts=counts, distances=distances, params=params, algorithm=1)
#' message("Time spent in Baum-Welch:", appendLF=FALSE)
#' stopTimedMessage(ptm)
#' } else {
#' ptm <- startTimedMessage("Baum-Welch: Fitting HMM parameters\n")
#' message(" ... on chromosomes ", paste0(fit.on.chrom, collapse=', '))
#' hmm <- fitHMM(counts=counts, distances=distances, params=params, algorithm=1)
#' message("Time spent in Baum-Welch:", appendLF=FALSE)
#' stopTimedMessage(ptm)
#' counts <- mcols(data)[,observable]
#' params2 <- list()
#' params2$startProbs_initial <- hmm$startProbs
#' params2$transProbs_initial <- hmm$transProbs
#' params2$emissionParams_initial <- hmm$emissionParams
#' params2$transDist <- transDist
#' params2$eps <- eps
#' params2$maxtime <- max.time
#' params2$maxiter <- max.iter
#' params2$verbosity <- verbosity
#' params2$numThreads <- num.threads
#' ptm <- startTimedMessage("Forward-Backward: Obtaining state sequence - no updates\n")
#' message(" ... on all chromosomes")
#' hmm <- fitHMM(counts=counts, distances=distances, params=params2, algorithm=2)
#' message("Time spent in Forward-Backward:", appendLF=FALSE)
#' stopTimedMessage(ptm)
#' }
#'
#' ### Construct result object ###
#' ptm <- startTimedMessage("Compiling results ...")
#' r <- list()
#' class(r) <- "NcomponentHMM"
#' if (hmm$error == "") {
#'
#' r$convergenceInfo <- hmm$convergenceInfo
#' names(hmm$weights) <- states
#' r$params <- list(startProbs=hmm$startProbs, transProbs=hmm$transProbs, transDist=hmm$transDist, emissionParams=hmm$emissionParams, weights=hmm$weights)
#' r$params.initial <- params
#' # States and posteriors
#' data$posteriorMax <- NA
#' for (i1 in 0:(nrow(hmm$posteriors)-1)) {
#' mask <- hmm$states == i1
#' data$posteriorMax[mask] <- hmm$posteriors[i1+1,mask]
#' }
#' rownames(hmm$posteriors) <- states
#' data$posteriors <- t(hmm$posteriors)
#' data$state <- factor(states, levels=states)[hmm$states+1]
#' ## Segmentation
#' data.collapse <- data
#' mcols(data.collapse) <- NULL
#' data.collapse$state <- data$state
#' df <- suppressMessages( collapseBins(as.data.frame(data.collapse), column2collapseBy = 'state') )
#' segments <- methods::as(df, 'GRanges')
#' seqlengths(segments) <- seqlengths(data)[seqlevels(segments)]
#'
#' ## Reorder the states by mean of the emission distrbution
#' stateorder <- as.character(states[order(hmm$emissionParams$mu)])
#' # Initial params
#' r$params.initial$startProbs_initial <- r$params.initial$startProbs_initial[stateorder]
#' names(r$params.initial$startProbs_initial) <- states
#' r$params.initial$transProbs_initial <- r$params.initial$transProbs_initial[stateorder, stateorder]
#' rownames(r$params.initial$transProbs_initial) <- states
#' colnames(r$params.initial$transProbs_initial) <- states
#' r$params.initial$emissionParams_initial <- r$params.initial$emissionParams_initial[stateorder, ]
#' rownames(r$params.initial$emissionParams_initial) <- states
#' # Params
#' r$params$startProbs <- r$params$startProbs[stateorder]
#' names(r$params$startProbs) <- states
#' r$params$transProbs <- r$params$transProbs[stateorder, stateorder]
#' rownames(r$params$transProbs) <- states
#' colnames(r$params$transProbs) <- states
#' r$params$emissionParams <- r$params$emissionParams[stateorder, ]
#' rownames(r$params$emissionParams) <- states
#' r$params$weights <- r$params$weights[stateorder]
#' names(r$params$weights) <- states
#' # Posteriors
#' data$posteriors <- data$posteriors[,stateorder]
#' colnames(data$posteriors) <- states
#' # Actual states
#' stateorder.mapping <- states
#' names(stateorder.mapping) <- stateorder
#' stateorder.mapping <- factor(stateorder.mapping, levels=states)
#' data$state <- stateorder.mapping[as.character(data$state)]
#' segments$state <- stateorder.mapping[as.character(segments$state)]
#' }
#' r$data <- data
#' r$segments <- segments
#' stopTimedMessage(ptm)
#'
#' return(r)
#' }
#' #' @importFrom stats pnbinom qnorm dnbinom
#' prepareMultivariate = function(data, hmms, statedef, max.states=Inf) {
#'
#' ## Assign variables
#' bins <- data
#' mcols(bins) <- NULL
#' bins$distance <- data$distance
#' modelnames <- names(hmms)
#' l <- list()
#' for (i1 in 1:ncol(statedef)) {
#' l[[i1]] <- statedef[,i1]
#' }
#' states <- rownames(statedef)
#' names(states) <- do.call(paste, l)
#' mapping <- names(states)
#' names(mapping) <- states
#' components <- lapply(statedef, levels)
#' if (any(names(components) != modelnames)) {
#' stop("names(hmms) must be equal to names(statedef)")
#' }
#' numstates <- length(states)
#'
#' ## Go through HMMs and extract stuff
#' ptm <- startTimedMessage("Extracting states ...")
#' counts <- matrix(NA, nrow=length(bins), ncol=length(modelnames), dimnames=list(NULL, modelnames))
#' emissionParams <- list()
#' statevec <- list()
#' for (i1 in 1:length(modelnames)) {
#' modelname <- modelnames[i1]
#' counts[,i1] <- hmms[[modelname]]$data$observable
#' emissionParams[[modelname]] <- hmms[[modelname]]$params$emissionParams
#' statevec[[modelname]] <- hmms[[modelname]]$data$state
#' }
#' maxcounts <- max(apply(counts, 2, max))
#' bins$counts <- counts
#' bins$state <- factor(states[do.call(paste, statevec)], levels=states)
#' stopTimedMessage(ptm)
#'
#' # Clean up to reduce memory usage
#' # remove(hmm)
#'
#' ## We pre-compute the z-values for each number of counts
#' ptm <- startTimedMessage("Computing pre z-matrix ...")
#' z.per.read <- list()
#' for (modelname in modelnames) {
#' z.per.read[[modelname]] <- array(NA, dim=c(maxcounts+1, length(components[[modelname]])), dimnames=list(counts=NULL, component=components[[modelname]]))
#' xcounts = 0:maxcounts
#' for (component in components[[modelname]]) {
#'
#' size = emissionParams[[modelname]][component,'size']
#' prob = emissionParams[[modelname]][component,'prob']
#' u = stats::pnbinom(xcounts, size, prob)
#'
#' # Check for infinities in u and set them to max value which is not infinity
#' qnorm_u = stats::qnorm(u)
#' mask <- qnorm_u==Inf
#' qnorm_u[mask] <- stats::qnorm(1-1e-16)
#' z.per.read[[modelname]][ , component] <- qnorm_u
#'
#' }
#' }
#' stopTimedMessage(ptm)
#'
#' ## Compute the z matrix
#' ptm <- startTimedMessage("Transfering values into z-matrix ...")
#' z.per.bin <- list()
#' for (modelname in modelnames) {
#' z.per.bin[[modelname]] = array(NA, dim=c(length(bins), length(components[[modelname]])), dimnames=list(bin=NULL, component=components[[modelname]]))
#' for (component in components[[modelname]]) {
#' z.per.bin[[modelname]][ , component] <- z.per.read[[modelname]][bins$counts[, modelname]+1, i1]
#' }
#' }
#'
#' # Clean up to reduce memory usage
#' remove(z.per.read)
#' stopTimedMessage(ptm)
#'
#' ### Calculate correlation matrix
#' ptm <- startTimedMessage("Computing inverse of correlation matrix ...")
#' correlationMatrix = array(NA, dim=c(length(modelnames),length(modelnames),length(states)), dimnames=list(model=modelnames, model=modelnames, state=states))
#' for (i1 in 1:dim(correlationMatrix)[3]) {
#' correlationMatrix[,,i1] <- diag(length(modelnames))
#' }
#' correlationMatrixInverse = correlationMatrix
#' determinant = rep(1, length(states))
#' names(determinant) <- states
#'
#' for (state in states) {
#' istate = which(state==states)
#' mask = which(bins$state==state)
#' if (length(mask) > 100) {
#' # Subselect z
#' z.temp <- matrix(NA, nrow=length(mask), ncol=length(modelnames), dimnames=list(NULL, model=modelnames))
#' for (modelname in modelnames) {
#' z.temp[,modelname] <- z.per.bin[[modelname]][mask, as.character(statedef[state, modelname])]
#' }
#' temp <- tryCatch({
#' correlationMatrix[,,state] <- cor(z.temp)
#' determinant[state] <- det( correlationMatrix[,,state] )
#' correlationMatrixInverse[,,state] <- chol2inv(chol(correlationMatrix[,,state]))
#' 0
#' }, warning = function(war) {
#' 1
#' }, error = function(err) {
#' 1
#' })
#' }
#' if (any(is.na(correlationMatrixInverse[,,state]))) {
#' correlationMatrixInverse[,,state] <- diag(length(modelnames))
#' }
#' }
#' remove(z.per.bin)
#' stopTimedMessage(ptm)
#'
#' ### Put correlation matrix into list
#' corrList <- list()
#' corrInvList <- list()
#' for (state in states) {
#' corrList[[state]] <- correlationMatrix[,, state]
#' corrInvList[[state]] <- correlationMatrixInverse[,, state]
#' }
#' correlationMatrix <- corrList
#' correlationMatrixInverse <- corrInvList
#'
#' ### Select states to use ###
#' weights <- sort(table(bins$state), decreasing = TRUE)
#' states2use <- names(weights)[1:min(max.states, length(weights))]
#' correlationMatrix <- correlationMatrix[states2use]
#' correlationMatrixInverse <- correlationMatrixInverse[states2use]
#' determinant <- determinant[states2use]
#' statedef <- statedef[states2use,]
#' mapping <- mapping[states2use]
#'
#' # Return parameters
#' out <- list(
#' correlationMatrix = correlationMatrix,
#' correlationMatrixInverse = correlationMatrixInverse,
#' determinant = determinant,
#' observable = counts,
#' emissionParams = emissionParams,
#' statedef = statedef,
#' mapping = mapping,
#' weights = weights
#' )
#' return(out)
#' }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.