README.md

CellSurvAssay

CellSurvAssay consists of a couple of tools that can be used to perform Clonogenic Survival Analysis in R very easily and efficiently. These two tools are:

Purpose of the CellSurvAssay R package

Below is just a quick workflow that can be used to perform Clonogenic Survival Analysis using this package. For more details on the functions, different method options for parameter estimation and calculation of plating efficiency, and customization of the figures, please refer to the package vignette.

Installing the package

# if installing from Bioconductor
# install BiocManager, if required
if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
# install CellSurvAssay
BiocManager::install("CellSurvAssay")
# load CellSurvAssay in R
library(CellSurvAssay) 



# if installing from GitHub
# install devtools, if required
if(!require(devtools)) {
    install.packages("devtools")
    library(devtools)
}
# install CellSurvAssay
install_github("pickeringlab/CellSurvAssay", 
               build_vignettes = TRUE,
               dependencies = TRUE)
# load CellSurvAssay in R memory
library(CellSurvAssay)  
browseVignettes("CellSurvAssay")

Importing the data set

datatab <- importData("path/to/file", "type of file")
datatab <- CASP8_data

Fitting the Linear Quadratic Model

lqmodelFit(datatab, "shCASP8-N")
#> ****** Cell type: shCASP8-N ******
#> 
#> *** Coefficients of LQ-model for cell survival *** 
#> method = ml 
#> PEmethod = fit 
#> 
#> Logarithmic plating efficiencies PE fitted as intercepts 
#> see remark in the manual, 1.2 
#>      Estimate Std. Error   t value     Pr(>|t|)
#> PE1 -1.238340 0.05429647 -22.80702 7.892816e-08
#> PE2 -1.205679 0.05371585 -22.44550 8.815030e-08
#> PE3 -1.297141 0.05537422 -23.42499 6.559791e-08
#> 
#> Shape parameters alpha and beta 
#>          Estimate  Std. Error    t value    Pr(>|t|)
#> alpha -0.01613085 0.038556758 -0.4183664 0.688215852
#> beta  -0.03678049 0.007020955 -5.2386733 0.001200996
#> 
#> Observed and fitted plating efficiencies (%): 
#>     Experiment   PE PEfitted
#> PE1          1 29.6     29.0
#> PE2          2 31.0     29.9
#> PE3          3 26.7     27.3
#> 
#> Residual Deviance: 9.996061 
#> Total residual sum of weighted squares rsswTot: 10.28712 
#> Residual Degrees of Freedom: 7 
#> Dispersion parameter: 1.469589 
#> 
#> Fraction rssw of rsswTot per Experiment 
#>   Experiment rssw perCent
#> 1          1 1.47    14.3
#> 2          2 1.08    10.5
#> 3          3 7.74    75.3
#> 
#> *** Analysis by CellSurvAssay v0.99.0 ***

Plotting Cell Survival curves

Individual curves

ggplotCSCurve(datatab, "shCASP8-NT")

Multiple curves

ggplotCSCurve(datatab, "shCASP8-NT", "shCASP8-B", "shCASP8-B+Z", "shCASP8-B+Z+N")

Comparing two curves

compareCurves(datatab, "shCASP8-N", "shCASP8-B+Z+N")
#> ****** Cell type 1: shCASP8-N   ||   Cell type 2: shCASP8-B+Z+N ******
#> 
#> Overall comparison test for coefficients alpha and beta of LQ-models 
#> ==================================================================== 
#> method = ml 
#> PEmethod = fit 
#> 
#> 6 PEs fitted as intercepts. To look at, use simple R print function. 
#> Null hypothesis (Model 1): one set of shape parameters alpha and beta for all data 
#> ---------------------------------------------------------------------------------- 
#>          Estimate  Std. Error    t value     Pr(>|t|)
#> alpha -0.01910478 0.020810067 -0.9180547 3.722228e-01
#> beta  -0.03692732 0.003798381 -9.7218568 4.061270e-08
#> 
#> Goodness-of-fit values 
#>  Residual Deviance: 12.85619 
#>  Total sum of squared weighted residuals rsswTot: 13.19573 
#>  Residual Degrees of Freedom: 16 
#>  Dispersion parameter: 0.8247333 
#> 
#> Alternative hypothesis (Model 2): two sets of shape parameters alpha and beta 
#> ----------------------------------------------------------------------------- 
#>                              Estimate  Std. Error    t value     Pr(>|t|)
#> alpha:curvesshCASP8-B+Z+N -0.02224331 0.031717703 -0.7012901 4.946148e-01
#> alpha:curvesshCASP8-N     -0.01613085 0.030528750 -0.5283823 6.055094e-01
#> beta:curvesshCASP8-B+Z+N  -0.03710309 0.005804313 -6.3923312 1.675728e-05
#> beta:curvesshCASP8-N      -0.03678049 0.005559103 -6.6162636 1.158171e-05
#> 
#> Goodness-of-fit values 
#>  Residual Deviance: 12.60644 
#>  Total sum of squared weighted residuals rsswTot: 12.89855 
#>  Residual Degrees of Freedom: 14 
#>  Dispersion parameter: 0.9213253 
#> 
#> Analysis of Variance Table and F-test
#> Model 2 versus Model 1
#>   Resid. Df Resid. Dev Df Deviance      F Pr(>F)
#> 1        16     12.856                          
#> 2        14     12.606  2  0.24975 0.1355 0.8744
#> 
#> *** Analysis by CellSurvAssay v0.99.0 ***

Calculating Dose Enhancement Ratio

calculateDER(datatab, "shCASP8-NT", "shCASP8-N", 0.25)
#> *** Dose Enhancement Ratio ***
#> 
#> control = shCASP8-NT
#> treatment = shCASP8-N
#> survival fraction = 0.25
#> method = ml
#> PEmethod = fit
#> DER = 0.945622065301553
#> 
#> *** Analysis by CellSurvAssay v0.99.0 ***


arunangshu-github/CellSurvAssay documentation built on June 15, 2022, 6:53 a.m.