.metpeak.process3 <- function(IP,INPUT,batch_id,minimal_counts_in_fdr=10){
# using betabinomial.hmm to call peaks per gene
print("Peak Calling Stage!")
Ng = unique(batch_id)
nip <- ncol(IP)
nin <- ncol(INPUT)
INPUT_mean <- rowMeans(INPUT)
IP_mean <- rowMeans(IP)
if (nip > nin) {
avg_input <- round(matrix(rep(INPUT_mean,nip-nin),ncol=nip-nin))
INPUT <- cbind(INPUT,avg_input)
}
else if (nip < nin){
avg_ip <- matrix(rep(IP_mean,nin-nip),ncol=nin-nip)
IP <- cbind(IP,avg_ip)
}
# initialize the HMM parameters
K = 3;
# opt = .help.optcond(K=K,c(0.7,0.4))
opt = .help.optcond(K=K)
F = opt$F
h = opt$h
# ab = .help.initpar(K=K) # automatically generate the inital parameters
ab = rbind(c(12,8,1),c(2,6,5))
ip_mean = mean(IP_mean) #averaged reads per nucleid
# initialize the variables
pvalues <- rep(1,nrow(IP))
for (ii in Ng){
print(ii)
flag <- batch_id==ii
ip=as.matrix(IP[flag,])
input=as.matrix(INPUT[flag,])
if (sum(ip)<ip_mean*nip){
res = list(ab,matrix(1/K,K,K),matrix(0,nrow(ip),K) )
res[[3]][,K] = matrix(1,nrow(ip))
cl = list(class = matrix(3,nrow(ip)) )
}else{
#
# using C++ to do the computation
res = cmpHmm(ip,input+1,matrix(1/K,K,K),ab,F,h) #res[[2]] = trans; to avoid 0, input + 1;
cl = help.compvit(ip,input+1,res[[2]],res[[1]])
}
# find the most significant region of a gene and treat it as a potential peak region
maxID = which.max(res[[1]][1,]/colSums(res[[1]])) # The most significant class res[[1]] = ab
# plot the result for future view usage
# dot <- 1:nrow(ip);
# matplot(cbind(ip,input),col = 1:(ncol(ip)*2));
# points(dot[cl$class==maxID],rep(max(ip)/2,sum(cl$class==maxID))) # test part
# anno = .get.gene.anno(ii,ANNOTATION,ANNOTATION_BATCH_ID)
# title(anno$gene)
# determine the peak region within a gene
peak_loci <- which(cl$class==maxID)
peak_loci_end <- length(peak_loci) # no peak condition included
if (peak_loci_end > 0){
peak_id <- c(0,which( (peak_loci[-1] - peak_loci[-peak_loci_end] ) > 1 ),peak_loci_end)
for (jj in 1:(length(peak_id)-1)){
jjpeak <- peak_loci[peak_id[jj]+1]:peak_loci[peak_id[jj+1]]
res[[3]][jjpeak,maxID] <- median(res[[3]][jjpeak,maxID]) #res[[3]] = res$postprob
}
}
pvalues[flag] = 1 - res[[3]][,maxID]
}
log.fdr=log(p.adjust(pvalues,method='fdr'))
# with significant number of reads only
ID=which( (IP_mean+INPUT_mean) > minimal_counts_in_fdr) #should be vector not matrix
log.fdr_sig=log(p.adjust(pvalues[ID], method = "fdr"))
log.fdr[ID]=log.fdr_sig
# fold enrichment
log.fc=log(IP_mean/(INPUT_mean+1))
# output result
PW=list(log.p=log(pvalues),log.fdr=log.fdr,log.fc=log.fc)
return(PW)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.