runmixMVPLN | R Documentation |
A function that launches the shiny app for this package. The shiny app permit to perform clustering using mixtures of matrix variate Poisson-log normal (MVPLN) via variational Gaussian approximations. Model selection can be done using AIC, AIC3, BIC and ICL.
runmixMVPLN()
No return value but open up a shiny page.
Anjali Silva, anjali@alumni.uoguelph.ca
Aitchison, J. and C. H. Ho (1989). The multivariate Poisson-log normal distribution. Biometrika 76.
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, New York, NY, USA, pp. 267–281. Springer Verlag.
Arlot, S., Brault, V., Baudry, J., Maugis, C., and Michel, B. (2016). capushe: CAlibrating Penalities Using Slope HEuristics. R package version 1.1.1.
Biernacki, C., G. Celeux, and G. Govaert (2000). Assessing a mixture model for clustering with the integrated classification likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence 22.
Bozdogan, H. (1994). Mixture-model cluster analysis using model selection criteria and a new informational measure of complexity. In Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach: Volume 2 Multivariate Statistical Modeling, pp. 69–113. Dordrecht: Springer Netherlands.
Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11, R25.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6.
Silva, A. et al. (2019). A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data. BMC Bioinformatics 20. Link
Silva, A. et al. (2018). Finite Mixtures of Matrix Variate Poisson-Log Normal Distributions for Three-Way Count Data. arXiv preprint arXiv:1807.08380.
## Not run:
runMPLNClust()
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.