Description Usage Arguments Value Author(s) Examples
View source: R/NormMixClus-functions.R
Perform co-expression and co-abudance analysis of high-throughput
sequencing data, with or without data transformation, using a Normal
mixture models for single number of clusters K.
The output of NormMixClusK
is an S4 object of
class RangedSummarizedExperiment
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | NormMixClusK(
y_profiles,
K,
alg.type = "EM",
init.runs = 50,
init.type = "small-em",
GaussianModel = "Gaussian_pk_Lk_Ck",
init.iter = 20,
iter = 1000,
cutoff = 0.001,
verbose = TRUE,
digits = 3,
seed = NULL
)
|
y_profiles |
y (n x q) matrix of observed profiles for n observations and q variables |
K |
Number of clusters (a single value). |
alg.type |
Algorithm to be used for parameter estimation:
“ |
init.runs |
Number of runs to be used for the Small-EM strategy, with a default value of 50 |
init.type |
Type of initialization strategy to be used:
“ |
GaussianModel |
One of the 28 forms of Gaussian models defined in Rmixmod,
by default equal to the |
init.iter |
Number of iterations to be used within each run for the Small-EM strategry, with a default value of 20 |
iter |
Maximum number of iterations to be run for the chosen algorithm |
cutoff |
Cutoff to declare algorithm convergence |
verbose |
If |
digits |
Integer indicating the number of decimal places to be used for the
|
seed |
If desired, an integer defining the seed of the random number generator. If
|
An S4 object of class RangedSummarizedExperiment
, with conditional
probabilities of cluster membership for each gene stored as assay data, and
log likelihood, ICL value, number of
clusters, and form of Gaussian model stored as metadata.
Cathy Maugis-Rabusseau, Andrea Rau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transformRNAseq(countmat, norm="none",
transformation="arcsin")$tcounts
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3
## Object of class coseqResults
run <- NormMixClus(y=profiles, K=2:3, iter=5)
run
## Run the Normal mixture model for K=2
## Object of class SummarizedExperiment0
run2 <- NormMixClusK(y=profiles, K=2, iter=5)
## Summary of results
summary(run)
## Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run, y_profiles=profiles)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.