R/gdsSubset.R

# This function replicates an existing gds, but includes only a subset of samples and snps
# it only works for snp,scan gds files

gdsSubset <- function(parent.gds,
                      sub.gds,
                      sample.include=NULL,
                      snp.include=NULL,
                      sub.storage=NULL,
                      compress="LZMA_RA",
                      block.size=5000,
                      verbose=TRUE){

  # this function only works for gds files having up to two dimensions, named "snp" and "sample"
  gds <- openfn.gds(parent.gds)

  # check that sample.include are all elements of sample.id
  sampID <- read.gdsn(index.gdsn(gds, "sample.id"))
  if (is.null(sample.include)) {
    sample.include <- sampID
  }
  chk <- all(sample.include %in% sampID)
  if (!chk) stop("sample.include elements are not all members of GDS sample.id")

  # logical vector for selecting samples
  sampsel <- is.element(sampID, sample.include)

  # check that snp.include are all elements of "snp"
  snpID <- read.gdsn(index.gdsn(gds, "snp.id"))
  if (is.null(snp.include)){
    snp.include <- snpID
  }
  chk <- all(snp.include %in% snpID)
  if (!chk) stop("snp.include elements are not all members of GDS snp.id")

  # logical vector for selecting snps
  snpsel <- is.element(snpID, snp.include)

  # new gds file
  gds.sub <- createfn.gds(sub.gds)

  ## TO DO: copy attributes for all

  # add sample.id
  node <- add.gdsn(gds.sub, "sample.id", sampID[sampsel], compress=compress, closezip=TRUE, check=TRUE)

  # add snp info
  add.gdsn(gds.sub, "snp.id", snpID[snpsel], compress=compress, closezip=TRUE, check=TRUE)

  add.gdsn(gds.sub, "snp.position", read.gdsn(index.gdsn(gds, "snp.position"))[snpsel], compress=compress, closezip=TRUE, check=TRUE)

  node.parent <- index.gdsn(gds, "snp.chromosome")
  node.sub <- add.gdsn(gds.sub, "snp.chromosome", read.gdsn(node.parent)[snpsel], compress=compress, closezip=TRUE, check=TRUE, storage="uint8")
  attributes <- get.attr.gdsn(node.parent)
  if (length(attributes) > 0){
    for (attribute in names(attributes)){
      put.attr.gdsn(node.sub, attribute, attributes[[attribute]])
    }
  }

  dimnames.parent <- ls.gdsn(gds)

  # alleles if they exist?
  if ("snp.allele" %in% dimnames.parent){
    add.gdsn(gds.sub, "snp.allele", read.gdsn(index.gdsn(gds, "snp.allele"))[snpsel], compress=compress, closezip=TRUE, check=TRUE)
  }
  # rsID if it exists
  if ("snp.rs.id" %in% dimnames.parent){
    add.gdsn(gds.sub, "snp.rs.id", read.gdsn(index.gdsn(gds, "snp.rs.id"))[snpsel], compress=compress, closezip=TRUE, check=TRUE)
  }

  # other dimensions
  dimnames <- dimnames.parent[!(dimnames.parent %in% c("sample.id", "snp.id", "snp.position", "snp.chromosome", "snp.allele", "snp.rs.id"))]

  sampID.parent <- sampID
  sampID.sub <- sampID[sampsel]

  snpID.parent <- snpID
  snpID.sub <- snpID[snpsel]

  # TO DO: check snp.order vs scan.order for snp,scan or scan,snp files
  for (dimname in dimnames){

    # node in parent file
    node.parent <- index.gdsn(gds, dimname)

    # check dimensions
    desc <- objdesp.gdsn(node.parent)

    if (length(desc$dim) != 2) next

    if (verbose) message(paste("working on", dimname))

    # check attributes of parent node to get array dimensions
    attributes <- get.attr.gdsn(node.parent)
    node.dim <- objdesp.gdsn(node.parent)$dim
    dimType <- NULL
    if ("sample.order" %in% names(attributes)) {
      
      dimType <- "scan,snp" 
      if (!isTRUE(all.equal(node.dim, c(length(sampID.parent), length(snpID.parent))))) stop(paste("dimensions of", dimname, "do not match sample.order"))
      
    } else if ("snp.order" %in% names(attributes)) {
      
      dimType <- "snp,scan"
      if (!isTRUE(all.equal(node.dim, c(length(snpID.parent), length(sampID.parent))))) stop(paste("dimensions of", dimname, "do not match sample.order"))
      
    } else {
      stop("gds node", dimname, "must have 'snp.order' or 'sample.order' as an attribute")
    }

    # subset node
    if (dimType == "scan,snp"){
      valdim <- c(sum(sampsel), sum(snpsel))
    } else {
      valdim <- c(sum(snpsel), sum(sampsel))
    }

    if (is.null(sub.storage)) {
      storage <- objdesp.gdsn(node.parent)$storage
    } else {
      storage <- sub.storage
    }

    node.sub <- add.gdsn(gds.sub, dimname, valdim=valdim, storage=storage)

    if (length(attributes) > 0){
      for (attribute in names(attributes)){
        if (attribute == "missing.value" & !is.null(sub.storage) && sub.storage == "bit2"){
          # hard coded missing value
          put.attr.gdsn(node.sub, attribute, 3)
        } else {
          put.attr.gdsn(node.sub, attribute, attributes[[attribute]])
        }
      }
    }

    # if genotypeDim is snp,scan then add data sample by sample (possibly with blocks eventually)
    # if genotypeDim is scan,snp then add data snp by snp in blocks of block.size
    if (dimType == "snp,scan"){

      for (i in 1:length(sampID.sub)){

        if (verbose & i %% 10==0) message(paste(dimname, "- sample", i, "of", sum(sampsel)))

        sample <- sampID.sub[i]
        i.parent <- which(sampID.parent %in% sample)
        i.sub <- which(sampID.sub %in% sample)

        start.parent <- c(1, i.parent)
        start.sub <- c(1, i.sub)
        count <- c(-1, 1)

        dat <- read.gdsn(node.parent, start=start.parent, count=count)
        write.gdsn(node.sub, dat[snpsel], start=start.sub, count=count)

      }
    } else if (dimType == "scan,snp"){

      nblocks <- ceiling(length(snpID.parent) / block.size)
      i.sub <- 1 # keep track of index in the subset file
      for (i in 1:nblocks){
        if (verbose) message(paste(dimname, "- block", i, "of", nblocks))

        # parent snps in this block:
        snps <- snpID.parent[(i-1)*block.size + (1:block.size)]
        snps <- snps[!is.na(snps)] # get rid of NAs from indexing errors
        # snpsel for this block:
        snpsel.block <- which(snps %in% snpID.sub)
        # if there are no snps included, go to the next block
        if (length(which(snps %in% snpID.sub)) == 0) next

        # otherwise, continue on: get the parent index to start at
        start.parent <- c(1, (i-1)*block.size + 1)
        count.parent <- c(-1, length(snps))

        # read in the block of genotypes
        dat <- read.gdsn(node.parent, start=start.parent, count=count.parent, simplify="none")
        # subset the genotypes for the subset file
        dat <- dat[, snpsel.block, drop=F]

        # write them out
        start.sub <- c(1, i.sub)
        count <- c(-1, ncol(dat))
        write.gdsn(node.sub, dat[sampsel, ], start=start.sub, count=count)

        # update parameters
        #cnt <- cnt + bsize
        i.sub <- i.sub + ncol(dat)
      }
    }

    sync.gds(gds.sub)

  }

  closefn.gds(gds)
  closefn.gds(gds.sub)
  cleanup.gds(sub.gds, verbose=verbose)
}
amstilp/GWASTools documentation built on May 10, 2019, 1:08 a.m.