#' Combine multiple expression tables (.tsv) into a single data frame
#'
#' This function reads multiple expression tables (.tsv files) in a directory
#' and combines them into a single gene expression data frame.
#'
#' @param mypath Path to directory containing .tsv files.
#' Files must have the first column in common, e.g. "Gene_ID".
#' Rows are gene IDs and columns are sample names.
#' @param pattern Pattern contained in each expression file.
#' Default is '.tsv$', which means that all files ending in '.tsv' in the
#' specified directory will be considered expression files.
#' @return Data frame with gene IDs as row names and their expression values in
#' each sample (columns).
#' @author Fabricio Almeida-Silva
#' @rdname dfs2one
#' @export
#' @importFrom utils head read.csv write.table
#' @examples
#' # Simulate two expression data frames of 100 genes and 30 samples
#' genes <- paste0(rep("Gene", 100), 1:100)
#' samples1 <- paste0(rep("Sample", 30), 1:30)
#' samples2 <- paste0(rep("Sample", 30), 31:60)
#' exp1 <- cbind(genes, as.data.frame(matrix(rnorm(100*30),nrow=100,ncol=30)))
#' exp2 <- cbind(genes, as.data.frame(matrix(rnorm(100*30),nrow=100,ncol=30)))
#' colnames(exp1) <- c("Gene", samples1)
#' colnames(exp2) <- c("Gene", samples2)
#'
#' # Write data frames to temporary files
#' tmpdir <- tempdir()
#' tmp1 <- tempfile(tmpdir = tmpdir, fileext = ".exp.tsv")
#' tmp2 <- tempfile(tmpdir = tmpdir, fileext = ".exp.tsv")
#' write.table(exp1, file=tmp1, quote=FALSE, sep="\t")
#' write.table(exp2, file=tmp2, quote=FALSE, sep="\t")
#'
#' # Load the files into one
#' exp <- dfs2one(mypath = tmpdir, pattern=".exp.tsv")
dfs2one <- function(mypath, pattern = ".tsv$"){
filenames <- list.files(path=mypath, full.names=TRUE, pattern = pattern)
datalist <- lapply(filenames, function(x) {
read.csv(file=x, header=TRUE, sep="\t", stringsAsFactors=FALSE,
check.names=FALSE)
})
merged.list <- Reduce(function(x,y) merge(x,y, all.x=TRUE), datalist)
rownames(merged.list) <- merged.list[,1]
merged.list[,1] <- NULL
return(merged.list)
}
#' Remove missing values in a gene expression data frame
#'
#' @param exp A gene expression data frame with genes in row names and
#' samples in column names or a `SummarizedExperiment` object.
#' @param replaceby What to use instead of NAs. One of 0 or 'mean'. Default is 0.
#'
#' @return Gene expression data frame or `SummarizedExperiment` object
#' with all NAs replaced according to the argument 'replaceby'.
#' @author Fabricio Almeida-Silva
#' @export
#' @rdname replace_na
#' @examples
#' data(zma.se)
#' exp <- replace_na(zma.se)
#' sum(is.na(exp))
replace_na <- function(exp, replaceby = 0) {
fexp <- handleSE(exp)
if(is(exp, "SummarizedExperiment")) {
fexp <- SummarizedExperiment::assay(exp)
} else {
fexp <- exp
}
if(replaceby == 0) {
fexp[is.na(fexp)] <- 0
} else {
indices <- which(is.na(fexp), arr.ind = TRUE)
fexp[indices] <- rowMeans(fexp, na.rm = TRUE)[indices[,1]]
}
if(is(exp, "SummarizedExperiment")) {
fexp <- exp2SE(fexp, exp)
}
return(fexp)
}
#' Remove genes that are not expressed based on a user-defined threshold
#'
#' @param exp A gene expression data frame with genes in row names
#' and samples in column names or a `SummarizedExperiment` object.
#' @param method Criterion to filter non-expressed genes out.
#' One of "mean", "median", "percentage", or "allsamples". Default is "median".
#' @param min_exp If method is 'mean', 'median', or 'allsamples',
#' the minimum value for a gene to be considered expressed.
#' If method is 'percentage', the minimum value each gene must have in
#' at least n percent of samples to be considered expressed.
#' @param min_percentage_samples In case the user chooses 'percentage' as method,
#' expressed genes must have expression >= min_exp in at least this percentage.
#' Values must range from 0 to 1.
#'
#' @return Filtered gene expression data frame or `SummarizedExperiment` object.
#' @author Fabricio Almeida-Silva
#' @export
#' @importFrom matrixStats rowMedians
#' @seealso
#' \code{\link[matrixStats]{rowMedians}}
#' \code{\link[WGCNA]{goodSamplesGenes}}
#' @rdname remove_nonexp
#' @examples
#' data(zma.se)
#' filt_exp <- remove_nonexp(zma.se, min_exp = 5)
remove_nonexp <- function(exp, method="median", min_exp=1, min_percentage_samples=0.25) {
fexp <- handleSE(exp)
if(method == "median") {
final_exp <- fexp[matrixStats::rowMedians(as.matrix(fexp)) >= min_exp,]
} else if (method == "mean") {
final_exp <- fexp[rowMeans(fexp) >= min_exp,]
} else if (method == "percentage") {
min_n <- ncol(fexp) * min_percentage_samples
final_exp <- fexp[rowSums(fexp >= min_exp) >= min_n, ]
} else if (method == "allsamples") {
final_exp <- fexp[rowSums(fexp >= min_exp) == ncol(fexp), ]
} else {
stop("No method specified. Please, choose a filtering method - mean, median or percentage")
}
if(is(exp, "SummarizedExperiment")) {
final_exp <- exp2SE(final_exp, exp)
}
return(final_exp)
}
#' Keep only genes with the highest variances
#'
#' @param exp A gene expression data frame with genes in row names
#' and samples in column names or a `SummarizedExperiment` object.
#' @param n Number of most variable genes (e.g., n=5000 will
#' keep the top 5000 most variable genes).
#' @param percentile Percentile of most highly variable genes
#' (e.g., percentile=0.1 will keep the top 10 percent most variable genes).
#' Values must range from 0 to 1.
#'
#' @return Expression data frame or `SummarizedExperiment` object with
#' the most variable genes in row names and samples in column names.
#' @author Fabricio Almeida-Silva
#' @export
#' @rdname filter_by_variance
#' @examples
#' data(zma.se)
#' filt_exp <- filter_by_variance(zma.se, p=0.1)
filter_by_variance <- function(exp, n=NULL, percentile=NULL) {
fexp <- handleSE(exp)
gene_var <- data.frame(Genes = rownames(fexp), Var = apply(fexp, 1, var))
gene_var_ordered <- gene_var[order(gene_var$Var, decreasing = TRUE), ]
if(!is.null(n) & is.null(percentile)) {
top_var <- gene_var_ordered$Genes[seq_len(n)]
} else if(is.null(n) & !is.null(percentile)) {
p <- nrow(gene_var_ordered) * percentile
top_var <- gene_var_ordered$Genes[seq_len(p)]
} else {
stop("Please, choose either 'n' or 'percentile'.")
}
top_variant_exp <- fexp[rownames(fexp) %in% top_var, ]
if(is(exp, "SummarizedExperiment")) {
top_variant_exp <- exp2SE(top_variant_exp, exp)
}
return(top_variant_exp)
}
#' Filter outlying samples based on the standardized connectivity (Zk) method
#'
#' @param exp A gene expression data frame with genes in row names
#' and samples in column names or a `SummarizedExperiment` object.
#' @param zk Standardized connectivity threshold. Default is -2.
#' @param cor_method Correlation method. One of "pearson", "biweight"
#' or "spearman". Default is "spearman".
#'
#' @return Filtered gene expression data frame or `SummarizedExperiment` object.
#' @author Fabricio Almeida-Silva
#' @importFrom WGCNA adjacency bicor
#' @seealso
#' \code{\link[WGCNA]{adjacency}}
#' @rdname ZKfiltering
#' @export
#' @examples
#' data(zma.se)
#' filt_exp <- ZKfiltering(zma.se)
#' @references
#' Oldham, M. C., Langfelder, P., & Horvath, S. (2012). Network methods for
#' describing sample relationships in genomic datasets: application to
#' Huntington’s disease. BMC systems biology, 6(1), 1-18.
ZKfiltering <- function(exp, zk = -2, cor_method = "spearman") {
fexp <- handleSE(exp)
if(cor_method == "pearson") {
A <- WGCNA::adjacency(fexp, type = "distance")
} else if(cor_method == "biweight") {
A <- WGCNA::adjacency(
fexp, type = "distance", corFnc = bicor,
corOptions = list(use = 'p', maxPOutliers = 0.05)
)
} else if(cor_method == "spearman"){
A <- WGCNA::adjacency(
fexp, type = "distance", corOptions = list(use = 'p', method = "spearman")
)
} else {
stop("Please, specify a correlation method (one of 'spearman', 'pearson' or 'biweight').")
}
k <- colSums(A) - 1
Z.k <- scale(k)
# Remove outliers
remove.samples <- Z.k < zk | is.na(Z.k)
fexp <- fexp[, !remove.samples]
message("Number of removed samples: ", sum(remove.samples))
if(is(exp, "SummarizedExperiment")) {
fexp <- exp2SE(fexp, exp)
}
return(fexp)
}
#' Quantile normalize the expression data
#'
#' @param exp A gene expression data frame with genes in row names
#' and samples in column names.
#'
#' @return Expression matrix with normalized values
#' @rdname q_normalize
#' @export
#' @examples
#' data(zma.se)
#' exp <- SummarizedExperiment::assay(zma.se)
#' norm_exp <- q_normalize(exp)
q_normalize <- function(exp) {
n <- nrow(exp)
rank.exp <- apply(exp, 2, rank)
U <- rank.exp / (n+1)
qnorm(U)
}
#' Apply Principal Component (PC)-based correction for confounding artifacts
#'
#' @param exp A gene expression data frame with genes in row names
#' and samples in column names or a `SummarizedExperiment` object.
#' @param verbose Logical indicating whether to display progress
#' messages or not. Default: FALSE.
#'
#' @return Corrected expression data frame or `SummarizedExperiment` object.
#' @author Fabricio Almeida-Silva
#' @export
#' @seealso
#' \code{\link[sva]{num.sv}},\code{\link[sva]{sva_network}}
#' @rdname PC_correction
#' @importFrom sva num.sv sva_network
#' @examples
#' data(zma.se)
#' exp <- filter_by_variance(zma.se, n=500)
#' exp <- PC_correction(exp)
#' @references
#' Parsana, P., Ruberman, C., Jaffe, A. E., Schatz, M. C., Battle, A., &
#' Leek, J. T. (2019). Addressing confounding artifacts in reconstruction of
#' gene co-expression networks. Genome biology, 20(1), 1-6.
PC_correction <- function(exp, verbose = FALSE) {
fexp <- handleSE(exp)
texp <- t(fexp) # transpose data frame
texp <- as.matrix(texp)
mod <- matrix(1, nrow = nrow(texp), ncol = 1)
colnames(mod) <- "Intercept"
if(verbose) { message("Calculating number of PCs to be removed...") }
nsv <- sva::num.sv(t(texp), mod, method = "be")
if(verbose) { message("Number of PCs estimated to be removed: ", nsv) }
# PC residualization of gene expression data using sva_network
if(verbose){ message("Removing PCs that contribute to noise...") }
exprs_corrected <- sva::sva_network(texp, nsv)
exprs_corrected_norm <- q_normalize(exprs_corrected)
final.exp.corrected <- as.data.frame(exprs_corrected_norm)
final.exp.corrected <- t(final.exp.corrected)
if(is(exp, "SummarizedExperiment")) {
final.exp.corrected <- exp2SE(final.exp.corrected, exp)
}
return(final.exp.corrected)
}
#' Preprocess expression data for network reconstruction
#'
#' @param exp A gene expression data frame with genes in row names
#' and samples in column names or a `SummarizedExperiment` object.
#' @param NA_rm Logical. It specifies whether to remove missing values
#' from the expression data frame or not. Default = TRUE.
#' @param replaceby If NA_rm is TRUE, what to use instead of NAs.
#' One of 0 or 'mean'. Default is 0.
#' @param Zk_filtering Logical. It specifies whether to filter outlying samples
#' by Zk or not. Default: TRUE.
#' @param zk If Zk_filtering is TRUE, the standardized connectivity threshold.
#' Samples below this threshold will be considered outliers. Default is -2.
#' @param cor_method If Zk_filtering is TRUE, the correlation method to use.
#' One of 'spearman', 'bicor', or 'pearson'. Default is 'spearman'.
#' @param remove_nonexpressed Logical. It specifies whether non-expressed genes
#' should be removed or not. Default is TRUE.
#' @param method If remove_nonexpressed is TRUE, the criterion to filter
#' non-expressed genes out. One of "mean", "median", "percentage",
#' or "allsamples". Default is 'median'.
#' @param min_exp If method is 'mean', 'median', or 'allsamples',
#' the minimum value for a gene to be considered expressed.
#' If method is 'percentage', the minimum value each gene must have in at least
#' n percent of samples to be considered expressed.
#' @param min_percentage_samples If method is 'percentage', expressed genes
#' must have expression >= min_exp in at least this percentage.
#' Values must range from 0 to 1. Default = 0.25.
#' @param remove_confounders Logical. If TRUE, it removes principal components
#' that add noise to the data.
#' @param variance_filter Logical. If TRUE, it will filter genes by variance.
#' Default is FALSE.
#' @param n If variance_filter is TRUE, the number of
#' most variable genes to keep.
#' @param percentile If variance_filter is TRUE, the percentage of
#' most variable genes to keep.
#' @param vstransform Logical indicating if data should be
#' variance stabilizing transformed. This parameter can only be set to TRUE
#' if data is a matrix of raw read counts.
#'
#' @return Processed gene expression data frame with gene IDs in row names
#' and sample names in column names or `SummarizedExperiment` object.
#' @author Fabricio Almeida-Silva
#' @seealso
#' \code{\link[DESeq2]{varianceStabilizingTransformation}}
#' @rdname exp_preprocess
#' @export
#' @examples
#' data(zma.se)
#' exp <- exp_preprocess(zma.se, variance_filter=TRUE, n=1000)
#' @references
#' Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of
#' fold change and dispersion for RNA-seq data with
#' DESeq2. Genome biology, 15(12), 1-21.
exp_preprocess <- function(exp, NA_rm = TRUE, replaceby = 0,
Zk_filtering = TRUE, zk = -2,
cor_method = "spearman",
remove_nonexpressed = TRUE, method = "median",
min_exp = 1, min_percentage_samples = 0.25,
remove_confounders = TRUE,
variance_filter = FALSE, n = NULL, percentile = NULL,
vstransform = FALSE) {
# Remove missing values
if(NA_rm) {
exp <- replace_na(exp, replaceby = replaceby)
}
# Remove non-expressed genes
if(remove_nonexpressed) {
exp <- remove_nonexp(
exp, method = method,
min_exp = min_exp,
min_percentage_samples = min_percentage_samples
)
}
# Apply VST for count data
if(vstransform) {
if(!requireNamespace("DESeq2", quietly = TRUE)) {
stop("vstransform = TRUE requires the Bioconductor package 'DESeq2'.")
}
fexp <- as.matrix(handleSE(exp))
fexp <- as.data.frame(DESeq2::varianceStabilizingTransformation(fexp))
if(is(exp, "SummarizedExperiment")) {
fexp <- exp2SE(fexp, exp)
}
exp <- fexp
}
# Filter by variance
if(variance_filter) {
exp <- filter_by_variance(exp, n = n, percentile = percentile)
}
# Zk filtering
if(Zk_filtering) {
exp <- ZKfiltering(exp, zk = zk, cor_method = cor_method)
}
# Remove confounders
if(remove_confounders) {
exp <- PC_correction(exp)
}
return(exp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.