mytest <- function(hgu95av2.db, hgu95av2ENTREZID, GeneAnswers) {
library(hgu95av2.db)
sample_probes <-sample(ls(hgu95av2ENTREZID),40)
sample_genes <-sapply(sample_probes,function(x)
hgu95av2ENTREZID[[x]])
sim<-mgeneSim(sample_genes,ont="MF",organism="human",measure="Wang")
d <- semData('org.Hs.eg.db', ont="MF")
require(GeneAnswers)
data('humanExpr')
data('humanGeneInput')
y <- geneAnswersBuilder(humanGeneInput, 'org.Hs.eg.db',
categoryType='KEGG', testType='hyperG',
pvalueT=0.1, geneExpressionProfile=humanExpr,
verbose=FALSE)
yy <- y@enrichmentInfo
require(clusterProfiler)
x <- enrichKEGG(humanGeneInput$GeneID, pvalueCutoff=0.2,
qvalueCutoff=0.2, minGSSize=1)
xx <- summary(x)
id <- sub("hsa", "", xx$ID)
idx <- id %in% rownames(yy)
p.clusterProfiler <- xx$pvalue[idx]
p.GeneAnswers <- yy[id[idx],]$"p value"
cor(p.clusterProfiler, p.GeneAnswers)
p.clusterProfiler-p.GeneAnswers
require(DOSE)
require(clusterProfiler)
data(geneList)
deg <- names(geneList)[abs(geneList)>2]
gda <- read.delim("/media/H_driver/Aimin_project/DO_data/all_gene_disease_associations.tsv")
dim(gda)
head(gda)
disease2gene=gda[, c("diseaseId", "geneId")]
disease2name=gda[, c("diseaseId", "diseaseName")]
x = enricher(deg, TERM2GENE=disease2gene, TERM2NAME=disease2name)
head(summary(x))
barplot(x)
y = GSEA(geneList, TERM2GENE=disease2gene, TERM2NAME=disease2name)
head(y)
gseaplot(y, "umls:C0003872")
library(AnnotationHub)
hub <- AnnotationHub()
query(hub, "Cricetulus")
query(hub, "human")
Cgriseus <- hub[["AH48061"]]
sample_gene <- sample(keys(Cgriseus), 100)
str(sample_gene)
library(clusterProfiler)
sample_test <- enrichGO(sample_gene, OrgDb=Cgriseus, pvalueCutoff=1, qvalueCutoff=1)
head(summary(sample_test))
library(org.Hs.eg.db)
data(geneList)
gene <- names(geneList)[abs(geneList) > 2]
gene.df <- bitr(gene, fromType = "ENTREZID",
toType = c("ENSEMBL", "SYMBOL"),
OrgDb = org.Hs.eg.db)
head(gene.df)
sink("test_ok_HT.txt")
ego.HT <- enrichGO(gene = gene,
universe = rownames(Example.Go.adjusted.by.exon[[2]]),
keytype = "ENSEMBL",
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 1,
qvalueCutoff = 0.8,GOFromGOSeq=Example.Go.adjusted.by.exon,whichway = "HT")
dim(ego.HT@result)
sink()
enrichMap(ego.HT, vertex.label.cex=1.2, layout=igraph::layout.kamada.kawai)
sink("test_ok_WHT.txt")
ego.WHT <- enrichGO(gene = gene,
universe = rownames(Example.Go.adjusted.by.exon[[2]]),
keytype = "ENSEMBL",
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 1,
qvalueCutoff = 0.8,GOFromGOSeq=Example.Go.adjusted.by.exon,whichway = "WHT")
dim(ego.WHT@result)
sink()
enrichMap(ego.WHT, vertex.label.cex=1.2, layout=igraph::layout.kamada.kawai)
enrichMap(ego, vertex.label.cex=1.2, layout=igraph::layout.kamada.kawai)
cnetplot(ego)
plotGOgraph(ego)
save.image(file="test_out.RData")
savehistory(file="test_out.Rhistory")
qExtID2TermID.df <- data.frame(extID=rep(names(ego$qExtID2TermID),times=lapply(ego$qExtID2TermID, length)),termID=ego$qTermID)
qExtID2TermID.df <- unique(qExtID2TermID.df)
qTermID2ExtID <- with(qExtID2TermID.df,split(as.character(extID), as.character(termID)))
head(summary(ego))
ego2 <- enrichGO(gene = gene.df$ENSEMBL,
OrgDb = org.Hs.eg.db,
keytype = 'ENSEMBL',
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
head(summary(ego2))
ego3 <- enrichGO(gene = gene.df$SYMBOL,
OrgDb = org.Hs.eg.db,
keytype = 'SYMBOL',
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
head(summary(ego3))
ego <- setReadable(ego, OrgDb = org.Hs.eg.db)
ego2 <- setReadable(ego2, OrgDb = org.Hs.eg.db)
head(summary(ego), n=3)
head(summary(ego2), n=3)
gsecc <- gseGO(geneList=geneList, ont="CC", OrgDb=org.Hs.eg.db, verbose=F)
head(summary(gsecc))
gseaplot(gsecc, geneSetID="GO:0000779")
gmtfile <- system.file("extdata", "c5.cc.v5.0.entrez.gmt", package="clusterProfiler")
c5 <- read.gmt(gmtfile)
egmt <- enricher(gene, TERM2GENE=c5)
head(summary(egmt))
egmt <- setReadable(egmt, OrgDb=org.Hs.eg.db, keytype="ENTREZID")
head(summary(egmt))
gsegmt <- GSEA(geneList, TERM2GENE=c5, verbose=F)
head(summary(gsegmt))
enrichMap(gsegmt, vertex.label.cex=1.2, layout=igraph::layout.kamada.kawai)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.