#' cvSCsampleprofile Function
#'
#' This function allows to calculate Intra-donor variations in single cell data
#' at sample level over longitudinal timepoints and visualize in a CV vs Mean
#' plot. Plots stored in output directory.
#' @param data_object Input \emph{PALMO} S4 object. Contains annotation table and
#' expression matrix or data frame. Rows represent gene/proteins column
#' represents participant samples (same as annotation table Sample column)
#' @param meanThreshold Average expression threshold to filter lowly expressed
#' genes Default is 0.1 (log2 scale)
#' @param cvThreshold Coefficient of variation threshold to select variable and
#' stable genes Default is 10 for single cell RNA (100*SD/mean)
#' @param cl Number of clusters. Use nCores-1 to run parallel. Default 2
#' @param plot_log10 Optional, Plot CV vs Mean on log10 scale. Default FALSE
#' @param fileName User-defined file name, Default outputFile
#' @param filePATH User-defined output directory \emph{PATH} Default, current
#' directory
#' @return PALMO object with CV list
#' @keywords cvSCsampleprofile
#' @examples
#' \dontrun{
#' palmo_obj <- cvSCsampleprofile(data_object=palmo_obj,
#' housekeeping_genes=c('GAPDH', 'ACTB'), fileName='scrna')
#' }
cvSCsampleprofile <- function(data_object, meanThreshold = NULL, cvThreshold = NULL, cl = 2,
plot_log10 = FALSE, fileName = NULL, filePATH = NULL) {
message(date(), ": Performing Sample-wise Coefficient of variance analysis")
## If filename or filepath null
if (is.null(fileName)) {
fileName <- "outputFile"
}
if (is.null(filePATH)) {
filePATH <- data_object@filePATH
}
## meanThrehold
if (is.null(meanThreshold)) {
meanThreshold <- 0
message(date(), ": Using mean threshold >= 0")
}
data_object@meanThreshold <- meanThreshold
## cvThrehold
if (is.null(cvThreshold)) {
cvThreshold <- 10
message(date(), ": Using CV threshold 10")
}
data_object@cvThreshold <- cvThreshold
## Get the data
ann <- data_object@curated$anndata
mat <- data_object@curated$data
check_data <- all.equal(row.names(ann), colnames(mat))
if (check_data == FALSE) {
stop(date(), ": Annotation of samples (rows) and datamatrix columns do not match")
}
## Calculate CV vs Mean for all genes per celltype
unigene <- row.names(mat)
uniSample <- sort(unique(ann$PTID))
ann$group_donor <- paste(ann$group, ann$PTID, sep = ":")
uniSamplegroup <- as.character(unique(ann$group_donor))
## CV-mean plot
message(date(), ": Plotting Sample wise CV analysis")
pdf(paste(filePATH, "/", fileName, "-CV-SampleGroup-Plot.pdf", sep = ""), width = 5, height = 5)
op <- pboptions(type = "timer") # default
res1 <- pblapply(uniSamplegroup, cl = cl, function(uS) {
# print(uS)
ann_df <- ann[ann$group_donor %in% uS, ]
if (nrow(ann_df) > 1) {
df <- mat[unigene, ann_df$Sample_group]
df <- data.frame(df, nonZero = apply(df, 1, function(x) {
sum(x != 0)
}), mean = rowMeans(df, na.rm = TRUE), sd = apply(df, 1, sd, na.rm = TRUE), var = apply(df,
1, var, na.rm = TRUE), stringsAsFactors = FALSE)
df$CV <- 100 * df$sd/df$mean
# the CV becomes very high for data with 0
df <- df[df$mean >= meanThreshold, ] #minimum expression >2^0.1=1
dp2a <- df[df$mean >= meanThreshold & df$CV > cvThreshold, c("mean", "sd", "var",
"CV")]
dp2a <- dp2a[order(dp2a$CV, dp2a$mean, decreasing = TRUE), ]
dp2b <- df[df$mean >= meanThreshold & df$CV < cvThreshold, ]
dp2b <- dp2b[order(-dp2b$mean, dp2b$CV, decreasing = FALSE), ]
plot1 <- ggplot(df, aes(x = mean, y = CV)) + geom_point(size = 0.5, color = "grey") +
labs(title = paste(uS, " timepoints=", nrow(ann_df), sep = "")) + geom_text_repel(data = dp2a[1:10,
], aes(x = mean, y = CV, label = row.names(dp2a[1:10, ])), col = "red", size = 2,
max.overlaps = 20) + geom_text_repel(data = dp2b[1:10, ], aes(x = mean, y = CV,
label = row.names(dp2b[1:10, ])), col = "blue", size = 2, max.overlaps = 20) +
theme_classic()
if (plot_log10 == TRUE) {
plot1 <- plot1 + scale_x_continuous(trans = "log10") + scale_y_continuous(trans = "log10")
}
print(plot1)
}
return(NULL)
})
pboptions(op)
dev.off()
message(date(), ": Done. Please check output directory for results.")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.