Vignette built on r format(Sys.time(), "%b %d, %Y")
with cisTopic version r packageVersion("cisTopic")
.
This vignette provides the code to run rGREAT with the hg38 assembly and RcisTarget with hg38 and mm10 based on liftover.
If your R version is below 3.5, you will need to install manually the following packages:
devtools::install_github("aertslab/AUCell") devtools::install_github("aertslab/RcisTarget")
source("https://bioconductor.org/biocLite.R") biocLite('GenomicRanges')
For installing cisTopic run:
devtools::install_github("aertslab/cisTopic")
# GREAT can work directly on mm10 coordinates cisTopicObject <- GREAT(cisTopicObject, genome='mm10', fold_enrichment=2, geneHits=1, sign=0.05, request_interval=10) # For using RcisTarget, we need to liftover the coordinates to the mm9 assemble library(R.utils) url <- "http://hgdownload.soe.ucsc.edu/goldenPath/mm10/liftOver/mm10ToMm9.over.chain.gz" mm10Tomm9.chain <- "mm10Tomm9.over.chain" download.file(url, destfile = paste0(mm10Tomm9.chain, ".gz")) gunzip(paste0(mm10Tomm9.chain, ".gz")) # Import chain file mm10Tomm9.chain <- import.chain(mm10Tomm9.chain) # Obtain liftOver dictionary (as list) mm10_coord <- cisTopicObject@region.ranges mm10_to_mm9_list <- liftOver(mm10_coord, mm10Tomm9.chain) # Run GREAT based on liftover to mm9 coordinates cisTopicObject <- binarizedcisTopicsToCtx(cisTopicObject, liftOver=mm10_to_mm9_list, genome='mm9') cisTopicObject <- scoredRegionsToCtx(cisTopicObject, liftOver=mm10_to_mm9_list, genome='mm9') pathToFeather <- 'mm9-DHS_enh_prom_pennstate-9species.all_regions.mc9nr.feather' cisTopicObject <- topicsRcisTarget(cisTopicObject, genome='mm9', pathToFeather, reduced_database=FALSE, nesThreshold=3, rocthr=0.005, maxRank=20000, nCores=4) cisTopicObject<- getCistromes(cisTopicObject, annotation = 'Both', nCores=5)
# url and file name for a chain file library(R.utils) url <- "http://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.gz" hg38ToHg19.chain <- "data/hg38ToHg19.over.chain" download.file(url, destfile = paste0(hg38ToHg19.chain, ".gz")) gunzip(paste0(hg38ToHg19.chain, ".gz")) # Import chain file hg38ToHg19.chain <- import.chain(hg38ToHg19.chain) # Obtain liftOver dictionary (as list) hg38_coord <- cisTopicObject@region.ranges hg38_to_hg19_list <- liftOver(hg38_coord, hg38ToHg19.chain) # Run GREAT based on liftover to hg19 coordinates cisTopicObject <- GREAT(cisTopicObject, genome='hg19', liftOver=hg38_to_hg19_list, fold_enrichment=2, geneHits=1, sign=0.05, request_interval=10) # Run GREAT based on liftover to hg19 coordinates cisTopicObject <- binarizedcisTopicsToCtx(cisTopicObject, liftOver=hg38_to_hg19_list, genome="hg19") cisTopicObject <- scoredRegionsToCtx(cisTopicObject, liftOver=hg38_to_hg19_list, genome="hg19") pathToFeather <- "hg19-regions-1M-9species.all_regions.mc9nr.feather" cisTopicObject <- topicsRcisTarget(cisTopicObject, genome='hg19', pathToFeather, reduced_database=FALSE, nesThreshold=3, rocthr=0.005, maxRank=20000, nCores=1) cisTopicObject<- getCistromes(cisTopicObject, annotation = 'Both', nCores=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.