R/plotHeatmap-methods.R

#' @name plotHeatmap
#' @inherit AcidGenerics::plotHeatmap
#' @author Michael Steinbaugh, Rory Kirchner
#' @note Updated 2021-05-17.
#'
#' @section Scaling:
#'
#' Here we're scaling simply by calculating the standard score (z-score).
#'
#' - mu: mean.
#' - sigma: standard deviation.
#' - x: raw score (e.g. count matrix).
#' - z: standard score (z-score).
#'
#' ```
#' z = (x - mu) / sigma
#' ```
#'
#' See also:
#'
#' - `pheatmap:::scale_rows()`.
#' - `scale()` for additional scaling approaches.
#'
#' @section Hierarchical clustering:
#'
#' Row- and column-wise hierarchical clustering is performed when `clusterRows`
#' and/or `clusterCols` are set to `TRUE`. Internally, this calls `hclust()`,
#' and defaults to the Ward method.
#'
#' Automatic hierarchical clustering of rows and/or columns can error for some
#' datasets. When this occurs, you'll likely see this error:
#'
#' ```
#' Error in hclust(d, method = method) :
#' NA/NaN/Inf in foreign function call
#' ```
#'
#' In this case, either set `clusterRows` and/or `clusterCols` to `FALSE`, or
#' you can attempt to pass an `hclust` object to these arguments. This is
#' recommended as an alternate approach to be used with `pheatmap()`, which is
#' called internally by our plotting code. Here's how this can be accomplished:
#'
#' ```r
#' mat <- assay(mat)
#' dist <- dist(mat)
#' hclust <- hclust(dist, method = "ward.D2")
#' ```
#'
#' @inheritParams AcidRoxygen::params
#'
#' @param scale `character(1)`.
#' Whether the values should be centered and scaled in either the row or
#' column direction, or remain unscaled.
#'
#' @param breaks `numeric` or `NULL`.
#' A sequence of numbers that covers the range of values in the matrix. Must
#' be 1 element longer than the color vector, which is handled internally
#' automatically, differing from the behavior in pheatmap.
#'
#' @param clusteringMethod `character(1)`.
#' Clustering method. Accepts the same values as `hclust()`.
#'
#' @param clusterRows,clusterCols `logical(1)`.
#' Arrange with hierarchical clustering.
#'
#' @param color `function`, `character`, or `NULL`.
#' Hexadecimal color function or values to use for plot.
#'
#' We generally recommend these hexadecimal functions from the viridis
#' package, in addition to our `synesthesia()` palette:
#'
#' - `viridis::viridis()`.
#' - `viridis::inferno()`.
#' - `viridis::magma()`.
#' - `viridis::plasma()`.
#'
#' Alternatively, colors can be defined manually using hexadecimal values
#' (e.g. `c("#FF0000", "#0000FF")`), but this is not generally recommended.
#' Refer to the RColorBrewer package for hexadecimal color palettes that may
#' be suitable. If set `NULL`, will use the default pheatmap colors.
#'
#' @param legendBreaks `numeric` or `NULL`.
#' Numeric vector of breakpoints for the color legend.
#'
#' @param legendColor `function` or `NULL`.
#' Hexadecimal color function to use for legend labels. Note that hexadecimal
#' values are not supported. If set `NULL`, will use the default pheatmap
#' colors.
#'
#' @param showRownames,showColnames `logical(1)`.
#' Show row or column names.
#'
#' @param treeheightRow,treeheightCol `integer(1)`.
#' Size of the row and column dendrograms. Use `0` to disable.
#'
#' @param ... Passthrough arguments to `pheatmap()`.
#' The argument names must be formatted in camel case, not snake case.
#'
#' @seealso
#' - `pheatmap::pheatmap()`.
#' - `RColorBrewer::brewer.pal()`.
#' - `stats::cor()`.
#' - `stats::hclust()`.
#'
#' @examples
#' data(
#'     RangedSummarizedExperiment,
#'     SingleCellExperiment_splatter,
#'     package = "AcidTest"
#' )
#'
#' ## SummarizedExperiment ====
#' object <- RangedSummarizedExperiment
#' ## Row scaling requires non-zero rows.
#' object <- AcidGenerics::nonzeroRowsAndCols(object)
#'
#' ## Symmetric row-scaled breaks (recommended).
#' plotHeatmap(
#'     object,
#'     scale = "row",
#'     color = AcidPlots::blueYellow,
#'     breaks = seq(from = -2L, to = 2L, by = 0.25),
#'     legendBreaks = seq(from = -2L, to = 2L, by = 1L)
#' )
#'
#' ## Using custom hexadecimal color input.
#' if (goalie::isInstalled("RColorBrewer")) {
#'     color <- rev(RColorBrewer::brewer.pal(n = 11L, name = "PuOr"))
#'     color <- grDevices::colorRampPalette(color)
#'     head(color)
#'     plotHeatmap(
#'         object = object,
#'         scale = "row",
#'         color = color,
#'         breaks = seq(from = -2L, to = 2L, by = 0.25),
#'         legendBreaks = seq(from = -2L, to = 2L, by = 1L)
#'     )
#' }
#'
#' ## SingleCellExperiment ====
#' object <- SingleCellExperiment_splatter
#' ## Row scaling requires non-zero rows.
#' object <- AcidGenerics::nonzeroRowsAndCols(object)
#' plotHeatmap(object)
NULL



## Updated 2021-05-17.
`plotHeatmap,SE` <- # nolint
    function(object,
             assay = 1L,
             interestingGroups = NULL,
             scale = c("row", "column", "none"),
             clusteringMethod = "ward.D2",
             clusterRows = TRUE,
             clusterCols = TRUE,
             showRownames = isTRUE(nrow(object) <= 30L),
             showColnames = TRUE,
             ## Set to `0L` to disable.
             treeheightRow = 50L,
             ## Set to `0L` to disable.
             treeheightCol = 50L,
             color,
             legendColor,
             breaks = seq(from = -3L, to = 3L, by = 0.25),
             legendBreaks = seq(from = -3L, to = 3L, by = 1L),
             borderColor = NULL,
             title = NULL,
             ## Attept to map genes to symbols automatically only when shown.
             convertGenesToSymbols = showRownames,
             ...) {
        requireNamespaces("pheatmap")
        validObject(object)
        assert(
            nrow(object) > 1L,
            ncol(object) > 1L,
            isScalar(assay),
            isFlag(clusterRows),
            isFlag(clusterCols),
            isFlag(showRownames),
            isFlag(showColnames),
            isInt(treeheightRow),
            isInt(treeheightCol),
            isString(borderColor, nullOk = TRUE),
            isString(title, nullOk = TRUE),
            isFlag(convertGenesToSymbols)
        )
        scale <- match.arg(scale)
        if (!isString(borderColor)) borderColor <- NA
        if (!isString(title)) title <- NA
        if (!is.numeric(breaks)) breaks <- NA
        if (!is.numeric(legendBreaks)) legendBreaks <- NA
        interestingGroups(object) <-
            matchInterestingGroups(object, interestingGroups)
        ## Warn and early return if any samples are duplicated.
        ## We've included this step here to work with the minimal bcbio RNA-seq
        ## test data set, which contains duplicate samples.
        if (!hasUniqueCols(object)) {
            alertWarning("Non-unique samples detected. Skipping plot.")
            return(invisible(NULL))
        }
        ## Modify the object to use gene symbols in the row names automatically,
        ## if possible. We're using `tryCatch()` call here to return the object
        ## unmodified if gene symbols aren't defined.
        if (isTRUE(convertGenesToSymbols)) {
            object <- tryCatch(
                expr = suppressMessages({
                    convertGenesToSymbols(object)
                }),
                error = function(e) {
                    object
                }
            )
        }
        ## Ensure we're always using a dense matrix.
        mat <- as.matrix(assay(object, i = assay))
        ## Ensure the user isn't passing in a matrix with any rows or columns
        ## containing all zeros when we're attempting to z-scale.
        if (!identical(scale, "none")) {
            assert(hasNonzeroRowsAndCols(mat))
        }
        ## Pre-process the matrix by applying row/column scaling, if desired.
        ## Run this step before hierarchical clustering (i.e. calculating the
        ## distance matrix).
        mat <- .scaleMatrix(mat, scale = scale)
        ## Now we're ready to perform hierarchical clustering. Generate `hclust`
        ## objects for rows and columns that we'll pass to pheatmap. Note that
        ## pheatmap supports `clusterRows = TRUE` and `clusterCols = TRUE`, but
        ## these have been found to error for some datasets. Therefore, we're
        ## performing hclust calculations on own here.
        hc <- .hclust(
            object = mat,
            method = clusteringMethod,
            rows = clusterRows,
            cols = clusterCols
        )
        assert(
            is.list(hc),
            identical(names(hc), c("rows", "cols"))
        )
        ## Get annotation columns and colors automatically.
        x <- .pheatmapAnnotations(object = object, legendColor = legendColor)
        assert(
            is.list(x),
            identical(
                x = names(x),
                y = c("annotationCol", "annotationColors")
            )
        )
        annotationCol <- x[["annotationCol"]]
        annotationColors <- x[["annotationColors"]]
        args <- list(color = color)
        if (is.numeric(breaks)) {
            args[["n"]] <- length(breaks) - 1L
        }
        color <- do.call(what = .pheatmapColorPalette, args = args)
        ## Substitute human-friendly sample names, if defined.
        sampleNames <- tryCatch(
            expr = sampleNames(object),
            error = function(e) {
                NULL
            }
        )
        if (hasLength(sampleNames)) {
            colnames(mat) <- sampleNames
            if (hasLength(annotationCol) && !anyNA(annotationCol)) {
                rownames(annotationCol) <- sampleNames
            }
        }
        ## Return pretty heatmap with modified defaults.
        args <- list(
            "mat" = mat,
            "annotationCol" = annotationCol,
            "annotationColors" = annotationColors,
            "borderColor" = borderColor,
            "breaks" = breaks,
            "clusterCols" = hc[["cols"]],
            "clusterRows" = hc[["rows"]],
            "color" = color,
            "legendBreaks" = legendBreaks,
            "main" = title,
            ## We're already applied scaling manually (see above).
            "scale" = "none",
            "showColnames" = showColnames,
            "showRownames" = showRownames,
            "treeheightCol" = treeheightCol,
            "treeheightRow" = treeheightRow,
            ...
        )
        args <- .pheatmapArgs(args)
        ## Ignore "partial match of 'just' to 'justification'" warning.
        withCallingHandlers(
            expr = do.call(what = pheatmap::pheatmap, args = args),
            warning = function(w) {
                if (isTRUE(grepl(
                    pattern = "partial match",
                    x = as.character(w)
                ))) {
                    invokeRestart("muffleWarning")
                } else {
                    w
                }
            }
        )
    }

formals(`plotHeatmap,SE`)[c("color", "legendColor")] <- # nolint
    .formalsList[c("heatmapColor", "heatmapLegendColor")]



## Updated 2020-02-19.
`plotHeatmap,SCE` <- # nolint
    function(object, ...) {
        plotHeatmap(
            object = aggregateCellsToSamples(object),
            ...
        )
    }



#' @rdname plotHeatmap
#' @export
setMethod(
    f = "plotHeatmap",
    signature = signature(object = "SingleCellExperiment"),
    definition = `plotHeatmap,SCE`
)

#' @rdname plotHeatmap
#' @export
setMethod(
    f = "plotHeatmap",
    signature = signature(object = "SummarizedExperiment"),
    definition = `plotHeatmap,SE`
)
acidgenomics/acidplots documentation built on April 1, 2024, 7:37 p.m.