#' Generate an overview plot for nsSNP locations versus number of nucleotide
#' variants by gene range
#'
#' A function that integrate the information from bioMart and plot the potential
#' nsSNP positions over the protein encoding range in
#' given chromosome, gene range (start coordinate, end coordinate).
#' For better resolution, the genome range is limited within 200-nt length.
#'
#' @param chrName A integer value of class "numeric" indicating
#' the human chromosome 1-22, or a char either in 'X'or 'Y' indicating
#' human sex chromosome.
#' @param startPosition A positive integer indicating the starting coordinate
#' of gene range.
#' @param endPosition A positive integer indicating the end coordinate
#' of gene range.
#'
#' @return Returns a plot indicating the overview potential nsSNPs
#'
#' @examples
#' # The used dataset of SNPs is default from SNPlocs.Hsapiens.dbSNP144.GRCh38 package
#' # The used dataset of Human genome is default from BSgenome.Hsapiens.UCSC.hg38 package
#'
#' # Generate the nsSNP locations in chromosome 3 in region of 49395439 to 49395566
#' nsSNPFreqPlot(chrName = 3,
#' startPosition = 49395520,
#' endPosition = 49395566)
#'
#' @references
#' Durinck, S., Spellman, P., Birney, E.,& Huber, W. (2009). Mapping identifiers
#' for the integration ofgenomic datasets with the R/Bioconductor package
#' biomaRt. *Nature Protocols*, 4, 1184–1191.2.
#'
#' Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma,
#' A.,& Huber, W. (2005).BioMart and Bioconductor: a powerful link between
#' biological databases and microarray data analysis.*Bioinformatics*,
#' 21, 3439–3440.
#'
#' Pagès, H., Aboyoun, P., Gentleman, R., DebRoy, S. (2021). Biostrings:
#' Efficient manipulation of biological strings. R package version 2.62.0,
#' https://bioconductor.org/packages/Biostrings.
#'
#' Pagès, H. (2017). SNPlocs.Hsapiens.dbSNP144.GRCh38: SNP locations for Homo
#' sapiens (dbSNPBuild 144). R package version 0.99.20.
#'
#' Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
#' New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
#'
#' @export
#' @import BSgenome
#' @import Biostrings
#' @import biomaRt
#' @import ggplot2
#' @import SNPlocs.Hsapiens.dbSNP144.GRCh38
#' @import BSgenome.Hsapiens.UCSC.hg38
nsSNPFreqPlot <- function(chrName, startPosition, endPosition){
# Checking argument validation and valid range
num_chroms <- c(1:22)
chr_chroms <- c('X','Y')
if (typeof(chrName) == "character" && !chrName %in% chr_chroms) {
stop("Please use integer between 1 to 22 to express the human chromosome
name, or character 'X' or 'Y' as human sex chromosome.
Please re-enter a valid input.")
}
if (typeof(chrName) == "double" && !chrName %in% num_chroms){
stop("The numeric input for human chromosome is between 1-22.
Please re-enter a valid input.")
}
if (typeof(startPosition) != "double" | typeof(endPosition) != "double" |
startPosition < 0 | endPosition < 0) {
stop("start and end coordinates should be in positive integer
of class numeric.")
}
if (endPosition - startPosition > 200) {
stop("The length of sequence input is over 200, please refine the range
within 200-length for better resolution.")
}
# Query the information of transcripts and SNPs regarding the input range
allGenesInfo <-findGeneInfo(chrName, startPosition, endPosition)
allChrSNP<-BSgenome::snpsBySeqname(SNPlocs.Hsapiens.dbSNP144.GRCh38,
as.character(chrName))
if (nrow(allGenesInfo) == 0){
stop("no transcpits available for the input coordinates.")
}
# Filter out the sequence that not encoding with protein
snps <- c()
for (i in 1:allChrSNP@elementMetadata@nrows){
if (allChrSNP@ranges@pos[i] <= endPosition &&
allChrSNP@ranges@pos[i] >= startPosition){
snps <- append(snps, i)
}
}
pc <- c()
geneName <- c()
lengths <- c()
for (i in 1:nrow(allGenesInfo)){
if (allGenesInfo$transcript_biotype[i] == 'protein_coding'){
pc <- c(pc, i)
geneName <- c(geneName, allGenesInfo$hgnc_symbol[i])
len <- allGenesInfo$transcript_end[i] - allGenesInfo$transcript_start[i] + 1
lengths <- c(lengths, len)
}
}
if (length(pc) == 0){
stop("no encoding protein involvoed in the input range, please re-enter another range.")
}
# Find the most wide width of encoded protein transcripts
curMax <- 1
for (i in 2:length(lengths)){
if (lengths[curMax] < length(i)){
curMax <- i
}
}
# Obtain corresponding gene sequence
# record all within SNP locations and number of single substitute nucleotides
# within the transcripts
#hsapiensSeq <- BSgenome.Hsapiens.UCSC.hg38
chr <- paste('chr',as.character(chrName),sep="")
tStart <- allGenesInfo$transcript_start[pc[curMax]]
tEnd <- allGenesInfo$transcript_end[pc[curMax]]
tSeq <-getSeq(x = hsapiensSeq, names = chr, start = tStart, end = tEnd)
loc <- c()
snp <- c()
numVars <- c()
for (i in 1:length(snps)){
pos <- allChrSNP@ranges@pos[snps[i]]
if (pos <= tEnd && pos >= tStart){
loc <-c(loc, allChrSNP@ranges@pos[snps[i]])
localIndex <- pos-tStart+1
if (localIndex %% 3 == 0){
start <- localIndex - 2
end <- localIndex
} else{
if (localIndex %% 3 == 1){
start <- localIndex
end <- localIndex + 2
} else {
start <- localIndex - 1
end <- localIndex + 1
}
}
if (end > length(tSeq)){
break
}
iupac <- unlist(strsplit(IUPAC_CODE_MAP[allChrSNP
@elementMetadata
$alleles_as_ambig[snps[i]]],
split=""))
oriCodon <- paste0(tSeq[start:end], collapse = "")
acc <- 0
for (k in 1:length(iupac)){
replacedSeq <- replace(tSeq, localIndex, iupac[k])
snpCodon <- paste0(replacedSeq[start:end], collapse = "")
if (Biostrings::GENETIC_CODE[oriCodon] != Biostrings::GENETIC_CODE[snpCodon]){
acc <- acc + 1
}
}
if (acc > 0){
numVars <- c(numVars, acc)
} else {
snp <- c(snp, i)
}
}
}
# Check whether nsSNP present, if no any nsSNP, gives message to user
if (0 == length(numVars)){
stop("no nsSNPs involvoed in the input range, you may re-define the range.")
}
# Fill the information into the plot
loc <- loc[-snp]
data <- data.frame(loc, numVars)
plot<-ggplot(data = data, mapping = aes(x = loc, y = numVars),
color=numVars,fill=numVars) +
geom_col(alpha=0.25, width = 2) +
geom_text(aes(label = loc),angle = 60, vjust = 0.25,
size = 2.5, colour = "black") +
labs(x = "nsSNP location", y = "Count of different nts",
title = "nsSNP locations VS Number of variant nucleotides",
subtitle = paste('Gene Name',geneName[curMax],sep=": ")) +
xlim(startPosition, endPosition) + ylim(c(0,4))
return(plot)
}
# [END]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.