betaparametVP <-
function(X,NX){
# X<-XX[,4:9]
#X<-as.numeric(X)
# row number
rn=length(X[,1])
# column number
cn=length(X[1,])
# dim=1 for sum of each row
MX=apply(X,1,sum)
# dim=2 for sum of each column
# weight
# w<-rep(0,cn)
# wight sequare
# W2<-rep(0,cn)
P<-rep(0,rn)
# proportions of sites or genes in cn columns
V<-rep(0,rn)
VX2<-rep(0,rn)
# nonbiased variance
VN<-rep(0,rn)
# alternative variance
VA<-rep(0,rn)
# alpha and beta matrix
#ab<-matrix(0,nrow=rn,2)
#AB<-array(NA,c(rn,100,cn))
# alpha in k<=100 iterations
AA<-matrix(0,nrow=rn,ncol=100)
# beta in k<=100 iterations
BB<-matrix(0,nrow=rn,ncol=100)
VVX2<-matrix(0,nrow=rn,ncol=100)
# weight in k<=100 iterations
WW<-array(0,c(rn,100,cn))
WW2<-array(0,c(rn,100,cn))
VV2<-array(0,c(rn,100,cn)) # sum of weight square accross cn columns (replicates)
SWW2<-matrix(0,nrow=rn,ncol=100)
SW<-rep(0,rn)
#Poportion of sites or genes in k<=100 iteration
PP<-matrix(0,nrow=rn,ncol=100)
PW<-array(0,c(rn,100,cn))
VV<-matrix(0,nrow=rn,ncol=100)
D<-matrix(NA,nrow=rn,ncol=100)
Q<-matrix(0,nrow=rn,ncol=cn)
# for(j in 1:cn){
w<-NX[1:cn]/sum(NX)
# }
# for(j in 1:cn){
W2<-w[1:cn]^2
# }
for(i in 1:rn){
# print(i)
if(MX[i]>0){
# if(MX[i]==0){
# P[i]<-0
# V[i]<-0
# }
# else{
for(j in 1:cn){
Q[i,j]<-X[i,j]/NX[j]
}
for(j in 1:cn){
P[i]<-P[i]+w[j]*Q[i,j]
}
# print(Q[i,1:cn])
for(j in 1:cn){
VX2[i]<-VX2[i]+(w[j]*Q[i,j])^2
}
V[i]<-(V[i]-sum(W2)*P[i])^2/(1-sum(W2))
# if(is.na(v[i])){v[i]<-0}
# print(c(P[i],V[i],VX2[i]))
ab<-betaparametab(NX,w,P[i],V[i])
# initialized alpha
AA[i,1]<-ab[1]
# initialized beta
BB[i,1]<-ab[2]
# initialized
VVX2[i,1]<-VX2[i]
# initialized weight square
WW2[i,1,1:cn]<-W2[1:cn]
# initialized weight
WW[i,1,1:cn]<-w[1:cn]
# initialized
PP[i,1]<-P[i]
VV[i,1]<-V[i]
# AB[i,1,]<-ab[i,]
D[i,1]<-10
# Use while roop to find estimation of weight, Proportion, and variance
k=1
while(D[i,k]>0.01){
k<-k+1
# print(k)
AB<-betaparametab(xn=NX,w=WW[i,(k-1),],P=PP[i,(k-1)],V=VV[i,(k-1)])
AA[i,k]<-AB[1]
BB[i,k]<-AB[2]
EW<-betaparametw(xn=NX,a=AA[i,k],b=BB[i,k])
# for (j in 1:cn){
WW[i,k,1:cn]<-EW
# }
# print(c(WW[i,k,1],WW[i,k,2],WW[i,k,3]))
for(j in 1:cn){
PP[i,k]<-PP[i,k]+WW[i,k,j]*Q[i,j]
SWW2[i,k]<-SWW2[i,k]+WW[i,k,j]^2
VVX2[i,k]<-VVX2[i,k]+(WW[i,k,j]*Q[i,j])^2
}
for(j in 1:cn){
VV[i,k]<-VV[i,k]+(WW[i,k,j]*Q[i,j]-PP[i,k]/cn)^2/(1-SWW2[i,k])
}
if(k<100){
D[i,k]<-abs(BB[i,k-1]-BB[i,k])
}else{
D[i,k]<-0
}
}
# unbiased variance
VN[i]<-VV[i,k]
SW[i]<-SWW2[i,k]
P[i]<-PP[i,k]
# alternative variance
meanNX<-mean(NX)
VA[i]<-((1+MX[i])/meanNX)*(1-(1+MX[i])/meanNX)/meanNX
#VA[i]<-(MX[i]/sum(NX))*(1-MX[i]/sum(NX))/sum(NX)
V[i]<-max(VN[i],VA[i])
}
}
paramet<-cbind(P,V)
return(paramet)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.