if(getRversion() >= "3.1.0") utils::globalVariables(c("myNorm","CellTypeMeans27K","CellTypeMeans450K"))
champ.refbase <- function(beta=myNorm,
arraytype="450K")
{
message("[===========================]")
message("[<<< ChAMP.REFBASE START >>>]")
message("-----------------------------")
### projectWBC function to do reference based cell proportions detecton.
projectWBC <- function(Y, coefWBC, contrastWBC=NULL, nonnegative=TRUE, lessThanOne=FALSE)
{
if(is.null(contrastWBC)) Xmat = coefWBC
else Xmat = coefWBC %*% t(contrastWBC)
nCol = dim(Xmat)[2]
nSubj = dim(Y)[2]
mixCoef = matrix(0, nSubj, nCol)
rownames(mixCoef) = colnames(Y)
colnames(mixCoef) = colnames(Xmat)
if(nonnegative)
{
#library(quadprog)
if(lessThanOne)
{
Amat = cbind(rep(-1,nCol), diag(nCol))
b0vec = c(-1,rep(0,nCol))
}
else{
Amat = diag(nCol)
b0vec = rep(0,nCol)
}
for(i in 1:nSubj){
obs = which(!is.na(Y[,i]))
Dmat = t(Xmat[obs,])%*%Xmat[obs,]
mixCoef[i,] = solve.QP(Dmat, t(Xmat[obs,])%*%Y[obs,i], Amat, b0vec)$sol
}
}
else{
for(i in 1:nSubj){
obs = which(!is.na(Y[,i]))
Dmat = t(Xmat[obs,])%*%Xmat[obs,]
mixCoef[i,] = solve(Dmat, t(Xmat[obs,]) %*% Y[obs,i])
}
}
return(mixCoef)
}
message("<< Load projectWBC function success. >>")
if(arraytype %in% c("EPIC", "EPICv2")) {
data("probe.features.epicv2")
} else if(arraytype == "EPICv1") {
data("probe.features.epicv1")
} else if(arraytype == "450K") {
data("probe.features")
} else (
stop("arraytype must be `EPICv2`, `EPICv1`, `450K`")
)
probe.features <- probe.features[rownames(beta),]
dedup <- !duplicated(probe.features$Name)
beta_dedup <- beta[dedup, ]
rownames(beta_dedup) <- probe.features[dedup, "Name"]
if(arraytype == "27K")
{
data(CellTypeMeans27K) # From Accomando et al. (27K)
DMRs27K <- intersect(rownames(CellTypeMeans27K), rownames(beta_dedup))
cellFrac <- projectWBC(beta_dedup[DMRs27K,],
CellTypeMeans27K[DMRs27K,],
lessThanOne=TRUE)
}else
{
data(CellTypeMeans450K) # From Reinius et al. (450K)
DMRs450K <- intersect(rownames(CellTypeMeans450K), rownames(beta_dedup))
cellFrac <- projectWBC(beta_dedup[DMRs450K,],
CellTypeMeans450K[DMRs450K,],
lessThanOne=TRUE)
}
message("Mean value for each estimated Cell Proportion:")
print(colMeans(cellFrac))
message(names(which.min(colMeans(cellFrac)))," has smallest cell proportion, all other cell proportions will be corrected by linear regression method.")
lm.o <- lm(t(beta) ~ cellFrac[,-1*which.min(colMeans(cellFrac))])
tmp.m <- t(lm.o$res)+rowMeans(beta);
tmp.m[tmp.m <= 0] <- min(tmp.m[which(tmp.m > 0)])
tmp.m[tmp.m >= 1] <- max(tmp.m[which(tmp.m < 1)])
message("All cell proportion influence except the one with least cell proportion get corrected.\n")
message("[<<<< ChAMP.REFBASE END >>>>]")
message("[===========================]")
return(list(CorrectedBeta=tmp.m,CellFraction=cellFrac))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.