## ----options, include=F, cache=F, results='hide', message=F----------------
knitr::opts_chunk$set(fig.align="center", cache=FALSE,error=FALSE,
fig.width=6,fig.height=6,autodep=TRUE,
out.width="600px", out.height="600px",
results="markup", echo=TRUE, eval=TRUE)
options(getClass.msg=FALSE)
set.seed(6473) ## for reproducibility
## ---- collapse=F, message=T, eval=F----------------------------------------
# devtools::install_github("YosefLab/VISION")
## ---- collapse=F, message=F, warning=F, eval=F-----------------------------
# library(VISION)
#
# counts = as.matrix(read.table("data/hemato_counts.csv.gz", sep=',', header=T, row.names=1))
#
# # compute scaled counts
# scale.factor = median(colSums(counts))
# scaled.counts = t(t(counts) / colSums(counts)) * scale.factor
#
# # perform preliminary Fano filtering to determing projection genes, as usual
# f.genes = VISION:::filterGenesFano(scaled.counts)
#
# # read in meta data
# meta = read.table("data/hemato_covariates.txt.gz", sep='\t', header=T, row.names=1)
# meta = meta[colnames(scaled.counts), -1]
#
# vis <- Vision(scaled.counts,
# c("data/h.all.v5.2.symbols.gmt"),
# pool=T,
# cellsPerPartition=5,
# projection_genes = f.genes,
# meta=meta)
#
# vis <- analyze(vis)
#
# viewResults(vis)
## ---- collapse=F, message=F, warning=F, eval=F-----------------------------
#
# cellsPerPartition = 5
#
# meta$GRvsER = as.factor(sapply(meta$ct, function(x) ifelse((x == "BA" || x == "ER" || x == "MK"), "ErLin", "GrLin")))
#
# meta.var = meta[,"GRvsER", drop=F]
# all.pools = sapply(levels(meta.var$GRvsER), function(x) {
# print(x)
# cells = rownames(meta.var)[meta.var[,1] == x]
# pools = VISION:::applyMicroClustering(scaled.counts[, cells],
# cellsPerPartition=cellsPerPartition,
# filterInput = f.genes,
# filterThreshold = 0.1,
# preserve_clusters = NULL,
# latentSpace = matrix(NA, 1, 1))
#
# nn <- sapply(1:length(pools), function(y) paste0(x, ".microcluster", y))
#
# names(pools) <- nn
# return(pools)
#
# })
#
# all.pools = unlist(all.pools, recursive=F)
#
# vis <- Vision(scaled.counts,
# c("data/h.all.v5.2.symbols.gmt"),
# projection_genes = f.genes,
# meta=meta,
# pools = all.pools)
#
# vis <- analyze(vis)
#
## ---- collapse=F, message=T------------------------------------------------
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.