QC_pipeline_df | R Documentation |
This function will run QC steps on a simplified data.frame.
QC_pipeline_df(
object,
filter_column_constant = TRUE,
filter_column_missing_rate_threshold = 0.5,
filter_row_missing_rate_threshold = NULL,
replace_outlier_method = "winsorize",
nSD = 5,
impute_method = "half-min",
run_batch_norm = FALSE,
run_transform = "scale",
verbose = TRUE
)
object |
A data.frame object, first two columnns are ID and Batch. |
filter_column_constant |
A logical value, whether to filter columns (features) with a constant value. |
filter_column_missing_rate_threshold |
A numeric threshold to filter columns (features) below a missing rate, default: 0.5. Other values: 0.2, 0.8. If NULL, then skip this step. |
filter_row_missing_rate_threshold |
A numeric threshold to filter rows (samples) below a missing rate. Default: NULL, to skip this step. Other values: 0.5, 0.2, 0.8. |
replace_outlier_method |
Method to replace outlier value, see |
nSD |
Define the N times of the SD as outliers. |
impute_method |
Imputation method, the default method is half the minimum value (‘half-min') of the metabolite. Currently support ’half-min', "median", "mean", "zero". |
run_batch_norm |
Whether run run_batch_norm ('batch_norm_df') |
run_transform |
Specify the transform method ('transformation'), eg. "log", "pareto_scale", "scale", "inverse_rank_transform". A User defined method is also supported. |
verbose |
print log information. |
A Metabolite object after QC.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.