#' Enrichment analysis using over-representation test
#'
#'
#' @docType methods
#' @name enrich.ORT
#' @rdname enrich.ORT
#' @aliases enrichORT
#'
#' @param geneList A numeric vector with gene as names.
#' @param keytype "Entrez" or "Symbol".
#' @param type Molecular signatures for testing, available datasets include
#' Pathway (KEGG, REACTOME, C2_CP), GO (GOBP, GOCC, GOMF),
#' MSIGDB (C1, C2 (C2_CP (C2_CP_PID, C2_CP_BIOCARTA), C2_CGP),
#' C3 (C3_MIR, C3_TFT), C4, C6, C7, HALLMARK)
#' and Complex (CORUM). Any combination of them are also accessible
#' (e.g. 'GOBP+GOMF+KEGG+REACTOME').
#' @param organism 'hsa' or 'mmu'.
#' @param pvalueCutoff FDR cutoff.
#' @param limit A two-length vector, specifying the minimal and
#' maximal size of gene sets for enrichent analysis.
#' @param universe A character vector, specifying the backgound genelist, default is whole genome.
#' @param gmtpath The path to customized gmt file.
#' @param verbose Boolean
#' @param ... Other parameter
#'
#' @return An enrichedResult instance.
#'
#' @author Wubing Zhang
#'
#' @seealso \code{\link{enrich.HGT}}
#' @seealso \code{\link{enrich.GSE}}
#' @seealso \code{\link{EnrichAnalyzer}}
#'
#' @examples
#' data(geneList, package = "DOSE")
#' genes <- geneList[1:100]
#' enrichedRes <- enrich.ORT(genes, keytype = "entrez")
#' head(slot(enrichedRes, "result"))
#'
#' @export
enrich.ORT <- function(geneList,
keytype = "Symbol",
type = "GOBP",
organism = 'hsa',
pvalueCutoff = 1,
limit = c(2, 100),
universe=NULL,
gmtpath = NULL,
verbose = TRUE,
...){
requireNamespace("clusterProfiler", quietly=TRUE) || stop("Please install the clusterProfiler package")
requireNamespace("DOSE", quietly=TRUE) || stop("Please install the DOSE package")
type[type=="GOBP"] <- "C5_BP"
type[type=="GOCC"] <- "C5_CC"
type[type=="GOMF"] <- "C5_MF"
## Prepare gene set annotation
gene2path = gsGetter(gmtpath, type, limit, organism)
idx = duplicated(gene2path$PathwayID)
pathways = data.frame(PathwayID = gene2path$PathwayID[!idx],
PathwayName = gene2path$PathwayName[!idx],
stringsAsFactors = FALSE)
## Gene ID conversion
gene = names(geneList)
if(keytype != "Entrez"){
allsymbol = names(geneList)
gene = TransGeneID(allsymbol, keytype, "Entrez", organism = organism)
idx = duplicated(gene)|is.na(gene)
geneList = geneList[!idx]; names(geneList) = gene[!idx]
}
if(!is.null(universe)){
universe = TransGeneID(universe, keytype, "Entrez", organism = organism)
universe = universe[!is.na(universe)]
}else{
universe = unique(c(gene, gene2path$Gene))
}
gene = names(geneList)
## Enrichment analysis
len = length(unique(intersect(gene, gene2path$Gene)))
if(verbose) message("\t", len, " genes are mapped ...")
orgdb = getOrg(organism)$pkg
enrichedRes = clusterProfiler::enricher(gene, universe = universe,
minGSSize = 0, maxGSSize = max(limit),
TERM2NAME = pathways, pvalueCutoff = pvalueCutoff,
TERM2GENE = gene2path[,c("PathwayID","Gene")])
if(!is.null(enrichedRes) && nrow(enrichedRes@result)>0){
res = enrichedRes@result[enrichedRes@result$p.adjust<=pvalueCutoff, ]
res = res[order(res$pvalue), ]
enrichedRes@result = res
}
## Add enriched gene symbols into enrichedRes table
if(!is.null(enrichedRes) && nrow(enrichedRes@result)>0){
allsymbol = TransGeneID(gene, "Entrez", "Symbol", organism = organism)
geneID = strsplit(enrichedRes@result$geneID, split = "/")
geneName = lapply(geneID, function(gid){
SYMBOL = allsymbol[gid]; paste(SYMBOL, collapse = "/")
})
enrichedRes@result$geneName = unlist(geneName)
enrichedRes@result$NES = as.vector(sapply(enrichedRes@result$geneID, function(x){
enrichGenes = unlist(strsplit(x, split = "/"))
NES = mean(geneList[enrichGenes]) * length(enrichGenes)^0.6
return(NES)
}))
idx = c("ID", "Description", "NES", "pvalue", "p.adjust",
"GeneRatio", "BgRatio", "geneID", "geneName", "Count")
enrichedRes@result = enrichedRes@result[, idx]
}
return(enrichedRes)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.