R/methods-extract.R

#' Extract or Replace Parts of an Object
#'
#' Extract genes by row and cells by column from a `bcbioSingleCell` object.
#'
#' @name extract
#' @family S4 Object
#' @author Michael Steinbaugh
#'
#' @inheritParams base::`[`
#' @inheritParams general
#'
#' @seealso
#' - `help("[", "base")`.
#' - `selectSamples()` for subsetting based on sample metadata.
#'
#' @return `bcbioSingleCell`.
#'
#' @examples
#' # bcbioSingleCell ====
#' cells <- head(colnames(indrops_small), 100L)
#' head(cells)
#' genes <- head(rownames(indrops_small), 100L)
#' head(genes)
#'
#' # Subset by cell identifiers
#' indrops_small[, cells]
#'
#' # Subset by genes
#' indrops_small[genes, ]
#'
#' # Subset by both genes and cells
#' indrops_small[genes, cells]
NULL



# Methods ======================================================================
#' @rdname extract
#' @export
setMethod(
    "[",
    signature(
        x = "bcbioSingleCell",
        i = "ANY",
        j = "ANY",
        drop = "ANY"
    ),
    function(x, i, j, ..., drop = FALSE) {
        validObject(x)

        # Genes
        if (missing(i)) {
            i <- 1L:nrow(x)
        }
        # Cells
        if (missing(j)) {
            j <- 1L:ncol(x)
        }

        # Regenerate and subset SummarizedExperiment
        sce <- as(x, "SingleCellExperiment")
        sce <- sce[i, j, drop = drop]

        # Early return if dimensions are unmodified
        if (identical(dim(sce), dim(x))) {
            return(x)
        }

        genes <- rownames(sce)
        cells <- colnames(sce)

        # Column data ==========================================================
        # Ensure factors get releveled
        colData <- colData(sce) %>%
            as.data.frame() %>%
            rownames_to_column() %>%
            mutate_if(is.character, as.factor) %>%
            mutate_if(is.factor, droplevels) %>%
            column_to_rownames() %>%
            as("DataFrame")

        # Metadata =============================================================
        metadata <- metadata(sce)
        metadata[["subset"]] <- TRUE
        # Update version, if necessary
        if (!identical(metadata[["version"]], packageVersion)) {
            metadata[["originalVersion"]] <- metadata[["version"]]
            metadata[["version"]] <- packageVersion
        }

        # cell2sample
        cell2sample <- metadata[["cell2sample"]]
        # Note that we're subsetting `sampleData` by the factor levels in
        # `cell2sample`, so this must come first
        cell2sample <- droplevels(cell2sample[cells])
        metadata[["cell2sample"]] <- cell2sample

        # sampleData
        sampleData <- metadata[["sampleData"]]
        assert_is_data.frame(sampleData)
        sampleData <- sampleData %>%
            .[levels(cell2sample), , drop = FALSE] %>%
            rownames_to_column() %>%
            mutate_all(as.factor) %>%
            mutate_all(droplevels) %>%
            column_to_rownames()
        metadata[["sampleData"]] <- sampleData

        # sampleIDs
        sampleIDs <- as.character(sampleData[["sampleID"]])

        # aggregateReplicates
        aggregateReplicates <- metadata[["aggregateReplicates"]]
        if (!is.null(aggregateReplicates)) {
            intersect <- intersect(cells, aggregateReplicates)
            aggregateReplicates <- aggregateReplicates %>%
                .[. %in% intersect]
            metadata[["aggregateReplicates"]] <- aggregateReplicates
        }

        # filterCells
        filterCells <- metadata[["filterCells"]]
        if (!is.null(filterCells)) {
            filterCells <- intersect(filterCells, cells)
            metadata[["filterCells"]] <- filterCells
        }

        # filterGenes
        filterGenes <- metadata[["filterGenes"]]
        if (!is.null(filterGenes)) {
            filterGenes <- intersect(filterGenes, genes)
            metadata[["filterGenes"]] <- filterGenes
        }

        # Unfiltered cellular barcodes
        cb <- metadata[["cellularBarcodes"]]
        # Bind barcodes into a single `data.frame`, which we can subset
        if (!is.null(cb)) {
            assert_is_list(cb)
            df <- .bindCellularBarcodes(cb)[cells, , drop = FALSE]
            cb <- mclapply(seq_along(sampleIDs), function(a) {
                df %>%
                    ungroup() %>%
                    .[.[["sampleID"]] == sampleIDs[[a]], , drop = FALSE] %>%
                    mutate(sampleID = NULL)
            })
            names(cb) <- sampleIDs
            metadata[["cellularBarcodes"]] <- cb
        }

        # Return ===============================================================
        .new.bcbioSingleCell(
            assays = assays(sce),
            rowRanges <- rowRanges(sce),
            colData <- colData,
            metadata = metadata,
            spikeNames = rownames(sce)[isSpike(sce)]
        )
    }
)
WeiSong-bio/roryk-bcbioSinglecell documentation built on July 6, 2019, 12:03 a.m.