#' Plot Counts Per Gene
#'
#' @name plotCountsPerGene
#' @family Quality Control Functions
#' @author Michael Steinbaugh, Rory Kirchner, Victor Barrera
#'
#' @inheritParams general
#'
#' @return `ggplot`.
#'
#' @examples
#' plotCountsPerGene(bcb_small)
NULL
# Methods ======================================================================
#' @rdname plotCountsPerGene
#' @export
setMethod(
"plotCountsPerGene",
signature("bcbioRNASeq"),
function(
object,
interestingGroups,
normalized = c("tmm", "rlog", "vst", "tpm", "rle"),
fill = scale_fill_hue(),
flip = TRUE,
title = "counts per gene"
) {
# Passthrough: fill, flip, title
validObject(object)
if (missing(interestingGroups)) {
interestingGroups <- bcbioBase::interestingGroups(object)
}
normalized <- match.arg(normalized)
assertIsFillScaleDiscreteOrNULL(fill)
assert_is_a_bool(flip)
assertIsAStringOrNULL(title)
# Subset the counts matrix to only include non-zero genes
nonzero <- .nonzeroGenes(object)
counts <- counts(object, normalized = normalized)
counts <- counts[nonzero, , drop = FALSE]
# Apply log2 transformation, if necessary
if (normalized %in% c("rlog", "vst")) {
# Already log2
fxn <- .meltCounts
} else {
fxn <- .meltLog2Counts
}
data <- fxn(counts, sampleData = sampleData(object))
# Subtitle
if (is_a_string(title)) {
subtitle <- paste(nrow(counts), "non-zero genes")
} else {
subtitle <- NULL
}
p <- ggplot(
data = data,
mapping = aes_string(
x = "sampleName",
y = "counts",
fill = "interestingGroups"
)
) +
geom_boxplot(color = lineColor, outlier.shape = NA) +
labs(
title = title,
subtitle = subtitle,
x = "sample",
y = paste(normalized, "counts (log2)"),
fill = paste(interestingGroups, collapse = ":\n")
)
if (is(fill, "ScaleDiscrete")) {
p <- p + fill
}
if (isTRUE(flip)) {
p <- p + coord_flip()
}
if (identical(interestingGroups, "sampleName")) {
p <- p + guides(fill = FALSE)
}
p
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.