R/find_markers.R

Defines functions find_markers

Documented in find_markers

#' A function for finding markers for hidden factors
#' 
#' Function takes a read counts matrix of entire gene set and a matrix
#'  of surrogate variables estimated by IA-SVA as input, 
#'  identifies marker genes highly correlated with each surrogate variable
#'  and returns a read counts matrix of the markers.
#' @importFrom stats lm p.adjust
#' @importFrom SummarizedExperiment SummarizedExperiment assay
#' @importFrom SingleCellExperiment SingleCellExperiment
#'  
#' @param Y A SummarizedExperiment or SingleCellExperiment class containing
#' read counts where rows represent genes and columns represent samples.
#' @param iasva.sv  matrix of estimated surrogate variables,
#'  one column for each surrogate variable. 
#' @param method multiple testing adjustment method, default = "BH".
#' @param sig.cutoff significance cutoff.
#' @param rsq.cutoff R squared cutoff.
#' @param verbose If verbose = TRUE, the function outputs detailed messages.
#'
#' @return marker.counts read counts matrix of markers,
#'  one column for each cell.
#' 
#' @examples
#' counts_file <- system.file("extdata", "iasva_counts_test.Rds",
#'  package = "iasva")
#' counts <- readRDS(counts_file)
#' anns_file <- system.file("extdata", "iasva_anns_test.Rds",
#'  package = "iasva")
#'  anns <- readRDS(anns_file)
#' Geo_Lib_Size <- colSums(log(counts + 1))
#' Patient_ID <- anns$Patient_ID
#' mod <- model.matrix(~Patient_ID + Geo_Lib_Size)
#' summ_exp <- SummarizedExperiment::SummarizedExperiment(assays = counts)
#' iasva.res <- iasva(summ_exp, mod[, -1], num.sv = 5, permute = FALSE)
#' markers <- find_markers(summ_exp, iasva.res$sv)
#' @export

find_markers <- function(Y, iasva.sv, method = "BH", sig.cutoff = 0.05,
                         rsq.cutoff = 0.3, verbose = FALSE) {
  # error handling
  stopifnot(class(Y)[1] == "SummarizedExperiment" | class(Y) == "SingleCellExperiment",
            is.numeric(sig.cutoff),
            is.numeric(rsq.cutoff), is.matrix(iasva.sv),
            method %in% c("holm", "hochberg", "hommel", "bonferroni",
                          "BH", "BY", "fdr", "none"))
  
  # transpose the read counts
  Y <- as.matrix(t(assay(Y)))
  if (min(Y) < 0) {
    Y <- Y + abs(min(Y))
  }
  lY <- log(Y + 1)
  all.markers <- NULL
  num.sv <- ncol(iasva.sv)
  for (i in seq(from = 1, to = num.sv, by = 1)) {
    fit <- lm(lY ~ iasva.sv[, i])
    pval.vec <- unlist(lapply(summary(fit), function(x) x$coefficient[2, 4]))
    rsq.vec <- unlist(lapply(summary(fit), function(x) x$adj.r.squared))
    pval.vec[is.na(pval.vec)] <- 1
    rsq.vec[is.na(rsq.vec)] <- 0
    adj.pval.vec <- p.adjust(pval.vec, method = method, n = length(pval.vec))
    markers <- colnames(Y)[adj.pval.vec < sig.cutoff & rsq.vec > rsq.cutoff]
    message("# of markers (", colnames(iasva.sv)[i], "): ",
               length(markers), "\n")
    all.markers <- c(all.markers, markers)
  }
  all.markers <- unique(all.markers)
  message("total # of unique markers: ", length(all.markers))
  marker.counts <- t(Y[, colnames(Y) %in% all.markers])
  return(marker.counts)
}
UcarLab/IA-SVA documentation built on Sept. 3, 2021, 1:38 p.m.