.runAIREMLgaussian <- function(Y, X, start, covMatList, group.idx, AIREML.tol, drop.zeros, max.iter, verbose){
# initial values
m <- length(covMatList)
g <- length(group.idx)
n <- length(Y)
sigma2.p <- drop(var(Y))
AIREML.tol <- AIREML.tol*sigma2.p # set convergence tolerance dependent on trait
val <- 2 * AIREML.tol
if(is.null(start)){
sigma2.k <- rep((1/(m+1))*sigma2.p, (m+g))
}else{
sigma2.k <- as.vector(start)
}
reps <- 0
repeat({
reps <- reps+1
zeroFLAG <- sigma2.k < AIREML.tol # which elements have converged to "0"
sigma2.k[zeroFLAG] <- 0 # set these to 0
## replace with:
sq <- .computeSigmaQuantities(varComp = sigma2.k, covMatList = covMatList, group.idx = group.idx)
lq <- .calcLikelihoodQuantities(Y, X, sq$Sigma.inv, diag(sq$cholSigma), PPY=(g==1))
# print current estimates
if(verbose) print(c(sigma2.k, lq$logLikR, lq$RSS))
## check for convergence
if (val < AIREML.tol) {
converged <- TRUE
(break)()
}
## check if exceeded the number of iterations
if (reps > max.iter) {
converged <- FALSE
warning("Maximum number of iterations reached without convergence!")
(break)()
}
if(reps > 1){
# Average Information and Scores
AI <- matrix(NA, nrow=(m+g), ncol=(m+g))
score <- rep(NA,(m+g))
covMats.score.AI <- .calcAIcovMats(Y = Y,
PY = lq$PY, covMatList = covMatList,
Sigma.inv = sq$Sigma.inv, Sigma.inv_X = lq$Sigma.inv_X, Xt_Sigma.inv_X.inv = lq$Xt_Sigma.inv_X.inv)
AI[1:m, 1:m] <- covMats.score.AI$AI
score[1:m] <- covMats.score.AI$score
het.vars.score.AI <- .calcAIhetvars(lq$PY, lq$PPY, group.idx,
Sigma.inv = sq$Sigma.inv, Sigma.inv_X = lq$Sigma.inv_X, Xt_Sigma.inv_X.inv = lq$Xt_Sigma.inv_X.inv)
score[(m + 1):(m + g)] <- het.vars.score.AI$score
AI[(m + 1):(m + g),(m+1):(m + g)] <- het.vars.score.AI$AI
### take care of "off diagonal" (terms for covariance between variance components corresponding to
### the covariance matriecs, and the residuals variances)
AI.off <- .calcAIcovMatsResids(lq$PY, covMatList, group.idx,
Sigma.inv = sq$Sigma.inv, Sigma.inv_X = lq$Sigma.inv_X, Xt_Sigma.inv_X.inv = lq$Xt_Sigma.inv_X.inv)
AI[1:m, (m + 1):(m + g)] <- AI.off
AI[(m + 1):(m + g),1:m ] <- t(AI.off)
if(drop.zeros){
# remove Zero terms
AI <- AI[!zeroFLAG,!zeroFLAG]
score <- score[!zeroFLAG]
}
# update
AIinvScore <- solve(AI, score)
if(drop.zeros){
sigma2.kplus1[!zeroFLAG] <- sigma2.k[!zeroFLAG] + AIinvScore
sigma2.kplus1[zeroFLAG] <- 0
}else{
sigma2.kplus1 <- sigma2.k + AIinvScore
sigma2.kplus1[zeroFLAG & sigma2.kplus1 < AIREML.tol] <- 0 # set elements that were previously "0" and are still < 0 back to 0 (prevents step-halving due to this component)
}
# step-halving if step too far
tau <- 1
while(!all(sigma2.kplus1 >= 0)){
tau <- 0.5*tau
if(drop.zeros){
sigma2.kplus1[!zeroFLAG] <- sigma2.k[!zeroFLAG] + tau*AIinvScore
sigma2.kplus1[zeroFLAG] <- 0
}else{
sigma2.kplus1 <- sigma2.k + tau*AIinvScore
sigma2.kplus1[zeroFLAG & sigma2.kplus1 < AIREML.tol] <- 0 # set elements that were previously "0" and are still < 0 back to 0 (prevents step-halving due to this component)
}
}
zeroFLAG <- sigma2.kplus1 < AIREML.tol
sigma2.kplus1[zeroFLAG] <- 0
val <- sqrt(sum((sigma2.kplus1 - sigma2.k)^2))
# update estimates
sigma2.k <- sigma2.kplus1
}else{
# EM step
sigma2.kplus1 <- rep(NA,(m+g))
for(i in 1:m){
### PAPY <- crossprod(lq$P,crossprod(covMatList[[i]],lq$PY))
PAPY <- sq$Sigma.inv %*% crossprod(covMatList[[i]],lq$PY) - tcrossprod(tcrossprod(lq$Sigma.inv_X, lq$Xt_Sigma.inv_X.inv), t(crossprod(covMatList[[i]],lq$PY)) %*% lq$Sigma.inv_X)
trPA.part1 <- sum( sq$Sigma.inv * covMatList[[i]] )
trPA.part2 <- sum(diag( (crossprod( lq$Sigma.inv_X, covMatList[[i]]) %*% lq$Sigma.inv_X) %*% lq$Xt_Sigma.inv_X.inv ))
trPA <- trPA.part1 - trPA.part2
### sigma2.kplus1[i] <- (1/n)*(sigma2.k[i]^2*crossprod(Y,PAPY) + n*sigma2.k[i] - sigma2.k[i]^2*sum(lq$P*covMatList[[i]]))
sigma2.kplus1[i] <- as.numeric((1/n)*(sigma2.k[i]^2*crossprod(Y,PAPY) + n*sigma2.k[i] - sigma2.k[i]^2*trPA ))
}
if(g == 1){
### sigma2.kplus1[m+1] <- (1/n)*(sigma2.k[m+1]^2*crossprod(lq$PY) + n*sigma2.k[m+1] - sigma2.k[m+1]^2*sum(diag(lq$P)))
trP.part1 <- sum(diag( sq$Sigma.inv ))
trP.part2 <- sum(diag( crossprod( lq$Sigma.inv_X) %*% lq$Xt_Sigma.inv_X.inv ))
trP <- trP.part1 - trP.part2
sigma2.kplus1[m+1] <- as.numeric((1/n)*(sigma2.k[m+1]^2*crossprod(lq$PY) + n*sigma2.k[m+1] - sigma2.k[m+1]^2*trP ))
}else{
for(i in 1:g){
### sigma2.kplus1[m+i] <- (1/n)*(sigma2.k[m+i]^2*crossprod(lq$PY[group.idx[[i]]]) + n*sigma2.k[m+i] - sigma2.k[m+i]^2*sum(diag(lq$P)[group.idx[[i]]]))
covMati <- Diagonal( x=as.numeric( 1:n %in% group.idx[[i]] ) )
trPi.part1 <- sum(diag(sq$Sigma.inv)[ group.idx[[i]] ] )
trPi.part2 <- sum(diag( (crossprod( lq$Sigma.inv_X, covMati) %*% lq$Sigma.inv_X) %*% lq$Xt_Sigma.inv_X.inv ))
trPi <- trPi.part1 - trPi.part2
sigma2.kplus1[m+i] <- as.numeric((1/n)*(sigma2.k[m+i]^2*crossprod(lq$PY[group.idx[[i]]]) + n*sigma2.k[m+i] - sigma2.k[m+i]^2*trPi ))
}
}
sigma2.k <- sigma2.kplus1
}
})
# linear predictor
eta <- as.numeric(lq$fits + crossprod(sq$Vre, lq$Sigma.inv_R)) # X\beta + Zb
return(list(varComp = sigma2.k, AI = AI, converged = converged, zeroFLAG = zeroFLAG, beta = lq$beta, residM = lq$residM, eta = eta, logLikR = lq$logLikR, logLik = lq$logLik, RSS = lq$RSS, fits = lq$fits))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.