setGeneric("assocTestSingle", function(gdsobj, ...) standardGeneric("assocTestSingle"))
## do we want the GxE.return.cov option?
## do we want to make imputing to the mean optional?
setMethod("assocTestSingle",
"SeqVarIterator",
function(gdsobj, null.model, test=c("Score", "Score.SPA", "BinomiRare", "CMP"),
recalc.pval.thresh=0.05, fast.score.SE=FALSE, GxE=NULL,
geno.coding=c("additive", "dominant", "recessive"),
sparse=TRUE, imputed=FALSE, male.diploid=TRUE, genome.build=c("hg19", "hg38"),
BPPARAM=bpparam(), verbose=TRUE) {
test <- match.arg(test)
geno.coding <- match.arg(geno.coding)
# don't use sparse matrices for imputed dosages
if (imputed) sparse <- FALSE
# Convert old null model format if necessary.
null.model <- .updateNullModelFormat(null.model)
# check that the provided null model is compatible with the requested test
.checkNullModelTestSingle(null.model = null.model, test = test,
recalc.pval.thresh = recalc.pval.thresh, fast.score.SE = fast.score.SE, GxE = GxE)
# coerce null.model if necessary
if (sparse) null.model <- .nullModelAsMatrix(null.model)
# filter samples to match null model
sample.index <- .setFilterNullModel(gdsobj, null.model, verbose=verbose)
# get sex for calculating allele freq
sex <- validateSex(gdsobj)[sample.index]
if (!is.null(GxE)) GxE <- .modelMatrixColumns(null.model, GxE)
# check ploidy
if (SeqVarTools:::.ploidy(gdsobj) == 1) male.diploid <- FALSE
# results
#n.iter <- length(variantFilter(gdsobj))
#set.messages <- ceiling(n.iter / 100) # max messages = 100
if(verbose) message('Using ', bpnworkers(BPPARAM), ' CPU cores')
i <- 1
ITER <- function() {
iterate <- TRUE
if (i > 1) {
iterate <- iterateFilter(gdsobj, verbose=FALSE)
}
i <<- i + 1
if (!iterate) {
return(NULL)
}
var.info <- variantInfo(gdsobj, alleles=FALSE, expanded=TRUE)
if (!imputed) {
geno <- expandedAltDosage(gdsobj, use.names=FALSE, sparse=sparse)[sample.index,,drop=FALSE]
} else {
geno <- imputedDosage(gdsobj, use.names=FALSE)[sample.index,,drop=FALSE]
}
chr <- chromWithPAR(gdsobj, genome.build=genome.build)
return(list(var.info=var.info, geno=geno, chr=chr))
}
res <- bpiterate(ITER, .testGenoBlockSingle, BPPARAM=BPPARAM,
sex=sex, null.model=null.model, test=test,
recalc.pval.thresh=recalc.pval.thresh,
fast.score.SE=fast.score.SE, GxE=GxE,
geno.coding=geno.coding,
sparse=sparse, imputed=imputed,
male.diploid=male.diploid)
.stopOnError(res)
as.data.frame(rbindlist(res))
})
setMethod("assocTestSingle",
"GenotypeIterator",
function(gdsobj, null.model, test=c("Score", "Score.SPA", "BinomiRare", "CMP"),
recalc.pval.thresh=0.05, GxE=NULL,
geno.coding=c("additive", "dominant", "recessive"),
male.diploid=TRUE, BPPARAM=bpparam(), verbose=TRUE) {
test <- match.arg(test)
geno.coding <- match.arg(geno.coding)
# Convert old null model format if necessary.
null.model <- .updateNullModelFormat(null.model)
# check that the provided null model is compatible with the requested test
.checkNullModelTestSingle(null.model = null.model, test = test,
recalc.pval.thresh = recalc.pval.thresh, fast.score.SE = FALSE, GxE = GxE)
# filter samples to match null model
sample.index <- .sampleIndexNullModel(gdsobj, null.model)
# get sex for calculating allele freq
sex <- validateSex(gdsobj)[sample.index]
if (!is.null(GxE)) GxE <- .modelMatrixColumns(null.model, GxE)
# results
# n.iter <- length(snpFilter(gdsobj))
# set.messages <- ceiling(n.iter / 100) # max messages = 100
if(verbose) message('Using ', bpnworkers(BPPARAM), ' CPU cores')
i <- 1
ITER <- function() {
iterate <- TRUE
if (i > 1) {
iterate <- GWASTools::iterateFilter(gdsobj)
}
i <<- i + 1
if (!iterate) {
return(NULL)
}
var.info <- variantInfo(gdsobj)
geno <- getGenotypeSelection(gdsobj, scan=sample.index, order="selection",
transpose=TRUE, use.names=FALSE, drop=FALSE)
return(list(var.info=var.info, geno=geno, chr=var.info$chr))
}
res <- bpiterate(ITER, .testGenoBlockSingle, BPPARAM=BPPARAM,
sex=sex, null.model=null.model, test=test,
recalc.pval.thresh=recalc.pval.thresh,
fast.score.SE=FALSE, GxE=GxE,
geno.coding=geno.coding,
sparse=FALSE, imputed=FALSE,
male.diploid=male.diploid)
.stopOnError(res)
as.data.frame(rbindlist(res))
})
# function to process a block of genotype data
.testGenoBlockSingle <- function(x, sex, null.model, test,
recalc.pval.thresh, fast.score.SE, GxE,
geno.coding,
sparse, imputed, male.diploid, ...) {
# for BinomiRare and CMP, restrict to variants where the alternate allele is minor
if (test %in% c("BinomiRare", "CMP")) {
AF.max <- 0.5
} else {
AF.max <- 1
}
x <- .prepGenoBlock(x, AF.max=AF.max, geno.coding=geno.coding, imputed=imputed,
sex=sex, male.diploid=male.diploid)
var.info <- x$var.info
n.obs <- x$n.obs
freq <- x$freq
geno <- x$geno
rm(x)
# mean impute missing values
if (any(n.obs < nrow(geno))) {
geno <- .meanImpute(geno, freq$freq)
}
# do the test
if (ncol(geno) == 0){
res.i <- NULL
} else {
assoc <- testGenoSingleVar(null.model, G=geno, E=GxE, test=test,
recalc.pval.thresh=recalc.pval.thresh,
fast.score.SE=fast.score.SE)
res.i <- cbind(var.info, n.obs, freq, assoc)
}
#if (verbose & n.iter > 1 & i %% set.messages == 0) {
# message(paste("Iteration", i , "of", n.iter, "completed"))
#}
return(res.i)
}
# check that the provided null model is compatible with the requested test
.checkNullModelTestSingle <- function(null.model, test, recalc.pval.thresh, fast.score.SE, GxE){
calc.score <- test %in% c("Score", "Score.SPA") | (recalc.pval.thresh < 1)
if(fast.score.SE && !isNullModelFastScore(null.model)){
stop("null.model must have se.correction when fast.score.SE = TRUE; re-fit your null.model using `fitNullModelFastScore` or update your null.model using `nullModelFastScore`")
}
if(calc.score && !(fast.score.SE) && isNullModelSmall(null.model)){
stop("small null.model cannot be used with test options provided")
}
if(!is.null(GxE) && isNullModelSmall(null.model)){
stop("small null.model cannot be used with GxE")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.