#' Simulate double immune rings
#'
#' @description Based on an existing background image, simulate double rings of
#' immune cells that surround tumour clusters. The inner ring is the internal
#' margin of a tumour cluster. The outer ring is the external tumour margin.
#' The tumour clusters and the double immune rings are simulated at the same
#' time. The default values for the arguments give an example of double ring
#' simulation which enable an automatic simulation of double rings without the
#' specification of any argument.
#'
#' @param bg_sample (OPTIONAL) A data frame or `SpatialExperiment` class object
#' with locations of points representing background cells. Further cell types
#' will be simulated based on this background sample. The data.frame or the
#' `spatialCoords()` of the SPE object should have colnames including
#' "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal
#' \code{\link{bg1}} background image.
#' @param bg_type (OPTIONAL) String The name of the background cell type. By
#' default is "Others".
#' @param n_dr Number of double immune rings. This must match the
#' `length(dr_properties)`.
#' @param dr_properties List of properties of the double immune rings. Please
#' refer to the examples for the structure of `dr_properties`.
#' @param plot_image Boolean. Whether the simulated image is plotted.
#' @param plot_categories String Vector specifying the order of the cell
#' categories to be plotted. Default is NULL - the cell categories under the
#' "Cell.Type" column would be used for plotting.
#' @param plot_colours String Vector specifying the order of the colours that
#' correspond to the `plot_categories` arg. Default is NULL - the predefined
#' colour vector would be used for plotting.
#'
#' @family simulate pattern functions
#' @seealso \code{\link{simulate_background_cells}} for all cell simulation,
#' \code{\link{simulate_mixing}} for mixed background simulation,
#' \code{\link{simulate_clusters}} for cluster simulation,
#' \code{\link{simulate_immune_rings}} for single immune ring simulation, and
#' \code{\link{simulate_stripes}} for vessel simulation.
#'
#' @return A data.frame of the simulated image
#' @export
#' @examples
#' set.seed(610)
#' # manually define the properties of the immune ring
#' dr_properties <- list(D1 = list(name_of_cluster_cell = "Tumour",size = 300,
#' shape = "Circle",centre_loc = data.frame("x" = 1000, "y" = 1000),infiltration_types
#' = c("Immune1", "Immune2", "Others"),infiltration_proportions = c(0.15, 0.05, 0.05),
#' name_of_ring_cell = "Immune1",immune_ring_width = 150,immune_ring_infiltration_types
#' = c("Others"),immune_ring_infiltration_proportions = c(0.15),name_of_double_ring_cell
#' = "Immune2",double_ring_width = 100,double_ring_infiltration_types = c("Others"),
#' double_ring_infiltration_proportions = c(0.15)),
#' D2 = list(name_of_cluster_cell = "Tumour",size = 300,shape = "Oval",centre_loc
#' = data.frame("x" = 1200, "y" = 1200),infiltration_types = c("Immune1", "Immune2", "Others"),
#' infiltration_proportions = c(0.15, 0.05, 0.05),name_of_ring_cell = "Immune1",
#' immune_ring_width = 150,immune_ring_infiltration_types = c("Others"),
#' immune_ring_infiltration_proportions = c(0.15),name_of_double_ring_cell = "Immune2",
#' double_ring_width = 100,double_ring_infiltration_types = c("Others"),
#' double_ring_infiltration_proportions = c(0.15)))
#'
#' double_ring_image <- simulate_double_rings(bg_sample = bg1,
#' n_dr = 2, dr_properties = dr_properties)
simulate_double_rings <- function(bg_sample = bg1,
bg_type = "Others",
n_dr = 2,
dr_properties = list(
D1 = list(
name_of_cluster_cell = "Tumour",
size = 300,
shape = "Circle",
centre_loc = data.frame("x" = 1000, "y" = 1000),
infiltration_types = c("Immune1", "Immune2", "Others"),
infiltration_proportions = c(0.15, 0.05, 0.05),
name_of_ring_cell = "Immune1",
immune_ring_width = 150,
immune_ring_infiltration_types = c("Others"),
immune_ring_infiltration_proportions = c(0.15),
name_of_double_ring_cell = "Immune2",
double_ring_width = 100,
double_ring_infiltration_types = c("Others"),
double_ring_infiltration_proportions = c(0.15)
),
D2 = list(
name_of_cluster_cell = "Tumour",
size = 300,
shape = "Oval",
centre_loc = data.frame("x" = 1200, "y" = 1200),
infiltration_types = c("Immune1", "Immune2", "Others"),
infiltration_proportions = c(0.15, 0.05, 0.05),
name_of_ring_cell = "Immune1",
immune_ring_width = 150,
immune_ring_infiltration_types = c("Others"),
immune_ring_infiltration_proportions = c(0.15),
name_of_double_ring_cell = "Immune2",
double_ring_width = 100,
double_ring_infiltration_types = c("Others"),
double_ring_infiltration_proportions = c(0.15)
)
),
plot_image = TRUE,
plot_categories = NULL,
plot_colours = NULL) {
## CHECK
if (!is.data.frame(bg_sample) & !methods::is(bg_sample, "SpatialExperiment")) {
stop("`bg_sample` should be either a data.frame or a SpatialExperiment object!")
}
if (!is.list(dr_properties)){
stop("`dr_properties` should be a list of lists where each list contains the properties of a double ring!")
}
for (i in seq_len(length(dr_properties))){
if (!setequal(names(dr_properties[[i]]),
c("name_of_cluster_cell", "size", "shape", "centre_loc",
"infiltration_types", "infiltration_proportions",
"name_of_ring_cell", "immune_ring_width",
"immune_ring_infiltration_types", "immune_ring_infiltration_proportions",
"name_of_double_ring_cell", "double_ring_width",
"double_ring_infiltration_types", "double_ring_infiltration_proportions"))) {
stop("`dr_properties` is a list of lists. Each list under `dr_properties` should contain fields:
`name_of_cluster_cell`, `size`, `shape`, `centre_loc`, `infiltration_types`, `infiltration_proportions`,
`name_of_ring_cell`, `immune_ring_width`, `immune_ring_infiltration_types`, `immune_ring_infiltration_proportions`,
`name_of_double_ring_cell`, `double_ring_width`, `double_ring_infiltration_types`, `double_ring_infiltration_proportions`.")
}
if (length(dr_properties[[i]]$infiltration_types) !=
length(dr_properties[[i]]$infiltration_proportions)){
stop("The ", i, "th list of `dr_properties` has different length of `infiltration_types` and `infiltration_proportions`.")
}
if (length(dr_properties[[i]]$immune_ring_infiltration_types) !=
length(dr_properties[[i]]$immune_ring_infiltration_proportions)){
stop("The ", i, "th list of `dr_properties` has different length of `immune_ring_infiltration_types` and `immune_ring_infiltration_proportions`.")
}
if (length(dr_properties[[i]]$double_ring_infiltration_types) !=
length(dr_properties[[i]]$double_ring_infiltration_proportions)){
stop("The ", i, "th list of `dr_properties` has different length of `double_ring_infiltration_types` and `double_ring_infiltration_proportions`.")
}
}
if (!is.null(plot_colours) & !is.null(plot_categories)){
if (length(plot_categories) != length(plot_colours)){
stop("`plot_categories` and `plot_colours` should be of the same length!")}}
if (methods::is(bg_sample, "SpatialExperiment")) {
bg_sample <- get_colData(bg_sample)}
# check if the specified cluster properties match n_dr
if (as.numeric(length(dr_properties)) != n_dr){
stop("`n_dr` does not match the length of `dr_properties`!")
}
# add a new column to store the position label for each cell (0 for core cluster,
# 1 for first ring, 2 for second ring, 3 for background cells)
bg_sample$lab <- 3
## Get the window, use the window of the background sample
X <- max(bg_sample$Cell.X.Position)
Y <- max(bg_sample$Cell.Y.Position)
win <- spatstat.geom::owin(c(0, X), c(0,Y))
## Default `Cell.Type` is specified by bg_type
# (when background sample does not have `Cell.Type`)
if (is.null(bg_sample$Cell.Type)){
bg_sample[, "Cell.Type"] <- bg_type
}
n_cells <- dim(bg_sample)[1]
for (k in seq_len(n_dr)) { # for each cluster
# get the arguments
cluster_cell_type <- dr_properties[[k]]$name_of_cluster_cell
size <- dr_properties[[k]]$size
shape <- dr_properties[[k]]$shape
centre_loc <- dr_properties[[k]]$centre_loc
infiltration_types <- dr_properties[[k]]$infiltration_types
infiltration_proportions <- dr_properties[[k]]$infiltration_proportions
ring_cell_type <- dr_properties[[k]]$name_of_ring_cell
ring_width <- dr_properties[[k]]$immune_ring_width
ring_infiltration_types <- dr_properties[[k]]$immune_ring_infiltration_types
ring_infiltration_proportions <- dr_properties[[k]]$immune_ring_infiltration_proportions
double_ring_cell_type <- dr_properties[[k]]$name_of_double_ring_cell
double_ring_width <- dr_properties[[k]]$double_ring_width
double_ring_infiltration_types <- dr_properties[[k]]$double_ring_infiltration_types
double_ring_infiltration_proportions <- dr_properties[[k]]$double_ring_infiltration_proportions
# generate a location as the centre of the cluster
if (is.null(centre_loc)){
seed_point <- spatstat.random::runifpoint(1, win=win)}
else seed_point <- centre_loc
a <- seed_point$x
b <- seed_point$y
# cluster size is the radius of the cluster
r <- size
R <- r^2
# cluster shape
shape <- shape
Circle <- (shape == "Circle")
Oval <- (shape == "Oval")
# immune ring radius
I_R <- (r+ring_width)^2
I_D <- (r+ring_width+double_ring_width)^2
# determine if each cell is in the cluster or in the immune ring or in the
# double ring or none
for (i in seq_len(n_cells)){
x <- bg_sample[i, "Cell.X.Position"]
y <- bg_sample[i, "Cell.Y.Position"]
pheno <- bg_sample[i, "Cell.Type"]
# squared distance to the cluster centre
A <- (x - a)^2
B <- (y - b)^2
AB <- (x-a)*(y-b)
D <- Circle*(A + B) + Oval*(A + AB + B)
# determine which region the point falls in
if (D < R){
# determine the primary label of the cell
bg_sample[i, "lab"] <- 0
# generate random number to decide the `Cell.Type`
r <- stats::runif(1)
n_infiltration_types <- length(infiltration_types)
pheno <- cluster_cell_type
n <- 1
current_p <- 0
while (n <= n_infiltration_types){
current_p <- current_p + infiltration_proportions[n]
if (r <= current_p) {
pheno <- infiltration_types[n]
break
}
n <- n+1
}
}
else if(D < I_R){
# determine the primary label of the cell, if the primary label is lower
# than 2, keep the primary label, skip out of the conditional
bg_sample[i, "lab"] <- min(1, bg_sample[i, "lab"])
if (bg_sample[i , "lab"] == 1){
# generate random number to decide the `Cell.Type`
r <- stats::runif(1)
n_ring_infiltration_types <- length(ring_infiltration_types)
pheno <- ring_cell_type
n <- 1
current_p <- 0
while (n <= n_ring_infiltration_types){
current_p <- current_p + ring_infiltration_proportions[n]
if (r <= current_p) {
pheno <- ring_infiltration_types[n]
break
}
n <- n+1
}
}
}
else if (D < I_D){
# determine the primary label of the cell, if the primary label is lower
# than 2, keep the primary label, skip out of the conditional
bg_sample[i, "lab"] <- min(2, bg_sample[i, "lab"])
if (bg_sample[i , "lab"] == 2){
# generate random number to decide the `Cell.Type`
r <- stats::runif(1)
n_double_ring_infiltration_types <- length(double_ring_infiltration_types)
pheno <- double_ring_cell_type
n <- 1
current_p <- 0
while (n <= n_double_ring_infiltration_types){
current_p <- current_p + double_ring_infiltration_proportions[n]
if (r <= current_p) {
pheno <- double_ring_infiltration_types[n]
break
}
n <- n+1
}
}
}
bg_sample[i, "Cell.Type"] <- pheno
}
}
# plot the image
if (plot_image){
if(is.null(plot_categories)) plot_categories <- unique(bg_sample$Cell.Type)
if (is.null(plot_colours)){
plot_colours <- c("gray","darkgreen", "red", "darkblue", "brown", "purple", "lightblue",
"lightgreen", "yellow", "black", "pink")
}
phenos <- plot_categories
plot_cells(bg_sample, phenos, plot_colours[seq_len(length(phenos))], "Cell.Type")
}
# delete the "lab" column
bg_sample$lab <- NULL
return(bg_sample)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.