#' Simulate clusters
#' @description Based on an existing background image, simulate clusters of
#' cells where the same type of cells aggregate. The default values for the
#' arguments give an example of cluster simulation which enable an automatic
#' simulation of clusters without the specification of any argument.
#'
#' @param bg_sample (OPTIONAL) A data frame or `SpatialExperiment` class object
#' with locations of points representing background cells. Further cell types
#' will be simulated based on this background sample. The data.frame or the
#' `spatialCoords()` of the SPE object should have colnames including
#' "Cell.X.Positions" and "Cell.Y.Positions". By default use the internal
#' \code{\link{bg1}} background image.
#' @param n_clusters Numeric. Number of clusters. This must match the
#' `length(cluster_properties)`.
#' @param bg_type (OPTIONAL) String. The name of the background cell type if the
#' background sample does not have a "Cell.Type" column. By default is
#' "Others".
#' @param cluster_properties List of properties of the clusters. See examples
#' for the format of this arg.
#' @param plot_image Boolean. Whether the simulated image is plotted.
#' @param plot_categories String Vector specifying the order of the cell
#' categories to be plotted. Default is NULL - the cell categories under the
#' "Cell.Type" column would be used for plotting.
#' @param plot_colours String Vector specifying the order of the colours that
#' correspond to the `plot_categories` arg. Default is NULL - the predefined
#' colour vector would be used for plotting.
#'
#' @family simulate pattern functions
#' @seealso \code{\link{simulate_background_cells}} for all cell simulation,
#' \code{\link{simulate_mixing}} for mixed background simulation,
#' \code{\link{simulate_immune_rings}}/\code{\link{simulate_double_rings}} for
#' immune ring simulation, and \code{\link{simulate_stripes}} for vessel
#' simulation.
#'
#' @return A data.frame of the simulated image
#' @export
#' @examples
#' set.seed(610)
#' cluster_image <- simulate_clusters(bg_sample = bg1,
#' n_clusters=2, cluster_properties=list(C1=list(name_of_cluster_cell="Tumour",
#' size=300, shape="Oval", centre_loc=data.frame("x"=500, "y"=500),
#' infiltration_types=c("Immune1", "Others"), infiltration_proportions=c(0.1, 0.05)),
#' C2=list(name_of_cluster_cell="Immune1", size=500, shape="Irregular",
#' centre_loc=data.frame("x"=1500,"y"=500), infiltration_types=c("Immune2", "Others"),
#' infiltration_proportions=c(0.1, 0.05))))
simulate_clusters <- function(bg_sample = bg1,
n_clusters = 2,
bg_type = "Others",
cluster_properties = list(
C1 = list(
name_of_cluster_cell = "Tumour",
size = 300,
shape = "Oval",
centre_loc = data.frame("x" = 500, "y" = 500),
infiltration_types = c("Immune1", "Others"),
infiltration_proportions = c(0.1, 0.05)),
C2 = list(
name_of_cluster_cell = "Immune1",
size = 500,
shape = "Irregular",
centre_loc = data.frame("x" = 1500, "y" = 500),
infiltration_types = c("Immune2", "Others"),
infiltration_proportions = c(0.1, 0.05))
),
plot_image = TRUE,
plot_categories = NULL,
plot_colours = NULL
){
## CHECK
if (!is.data.frame(bg_sample) & !methods::is(bg_sample, "SpatialExperiment")) {
stop("`bg_sample` should be either a data frame or a SpatialExperiment object!")
}
if (!is.list(cluster_properties)){
stop("`cluster_properties` should be a list of lists where each list contains the properties of a cluster!")
}
if (length(cluster_properties) != n_clusters){
stop("`n_clusters` should be the same as the length of `cluster_properties`!")
}
for (i in seq_len(length(cluster_properties))){
if (!setequal(names(cluster_properties[[i]]),
c("name_of_cluster_cell", "size", "shape", "centre_loc",
"infiltration_types", "infiltration_proportions"))) {
stop("`cluster_properties` is a list of lists. Each list under `cluster_properties` should contain fields:
`name_of_cluster_cell`, `size`, `shape`, `centre_loc`, `infiltration_types`, `infiltration_proportions`.")
}
if (length(cluster_properties[[i]]$infiltration_types) != length(cluster_properties[[i]]$infiltration_proportions)){
stop("The ", i, "th list of `cluster_properties` has different length of `infiltration_types` and `infiltration_proportions`.")
}
}
if (!is.null(plot_colours) & !is.null(plot_categories)){
if (length(plot_categories) != length(plot_colours)){
stop("`plot_categories` and `plot_colours` should be of the same length!")}}
if (methods::is(bg_sample, "SpatialExperiment")) {
bg_sample <-get_colData(bg_sample)}
# Get the window, use the window of the background sample
X <- max(bg_sample$Cell.X.Position)
Y <- max(bg_sample$Cell.Y.Position)
win <- spatstat.geom::owin(c(0, X), c(0,Y))
# Default cell type is specified by bg_type
# (when background sample does not have `Cell.Type`)
if (is.null(bg_sample$Cell.Type)){
bg_sample[, "Cell.Type"] <- bg_type
}
n_cells <- dim(bg_sample)[1]
for (k in seq_len(n_clusters)) { # for each cluster
# get the arguments
cell_type <- cluster_properties[[k]]$name_of_cluster_cell
size <- cluster_properties[[k]]$size
shape <- cluster_properties[[k]]$shape
centre_loc <- cluster_properties[[k]]$centre_loc
infiltration_types <- cluster_properties[[k]]$infiltration_types
infiltration_proportions <- cluster_properties[[k]]$infiltration_proportions
# generate a location as the centre of the cluster
if (is.null(centre_loc)){
seed_point <- spatstat.random::runifpoint(1, win=win)}
else seed_point <- centre_loc
a <- seed_point$x
b <- seed_point$y
r <- size
R <- r^2
shape <- shape
#r_theta <- stats::runif(1, min = -2 , max = 1) # for the irregular shape
# `r_theta` not random
r_theta <- 0.5
Circle <- (shape == "Circle")
Oval <- (shape == "Oval")
Strip <- (shape == "Strip")
for (i in seq_len(n_cells)){
x <- bg_sample[i, "Cell.X.Position"]
y <- bg_sample[i, "Cell.Y.Position"]
pheno <- bg_sample[i, "Cell.Type"]
A <- (x - a)^2
B <- (y - b)^2
AB <- (x-a)*(y-b)
if (shape != "Irregular"){
D <- Circle*(A + B) + Oval*(A + AB + B) + Strip*(A - 1.96*AB + B)
if (D < R){ # in the region of cluster
# generate random number to decide the `Cell.Type`
random <- stats::runif(1)
n_infiltration_types <- length(infiltration_types)
# default `Cell.Type` is cell type of interest of this cluster
pheno <- cell_type
# if the random number falls in the range of an infiltration proportion,
# pheno will be the corresponding infiltraiton type
n <- 1 # start from the first proportion
current_p <- 0
while (n <= n_infiltration_types){
current_p <- current_p + infiltration_proportions[n]
if (random <= current_p) {
pheno <- infiltration_types[n]
break
}
n <- n+1
}
}
}
else { # use heart shape to represent irregular immune cluster
d <- sqrt(A+B)
theta <- atan( (y-b)/(x-a) )
# adjust the calculated angle
if (AB*(y-b) < 0) theta <- theta + pi # II or III Quadrant
else if (AB < 0) theta <- theta + 2*pi # IV Quadrant
if (d < 0.55*r+0.45*r*cos(theta) && theta < r_theta + 1 && theta > r_theta){
random <- stats::runif(1)
n_infiltration_types <- length(infiltration_types)
# default `Cell.Type` is cell type of interest of this cluster
pheno <- cell_type
# if the random number falls in the range of an infiltration proportion,
# pheno will be the corresponding infiltration type
n <- 1 # start from the first proportion
current_p <- 0
while (n <= n_infiltration_types){
current_p <- current_p + infiltration_proportions[n]
if (random <= current_p) {
pheno <- infiltration_types[n]
break
}
n <- n+1 }
}
}
bg_sample[i, "Cell.Type"] <- pheno
}
}
if (plot_image){
if(is.null(plot_categories)) plot_categories <- unique(bg_sample$Cell.Type)
if (is.null(plot_colours)){
plot_colours <- c("gray","darkgreen", "red", "darkblue", "brown", "purple", "lightblue",
"lightgreen", "yellow", "black", "pink")
}
phenos <- plot_categories
plot_cells(bg_sample, phenos, plot_colours[seq_len(length(phenos))], "Cell.Type")
}
return(bg_sample)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.