R/dViolins.R

Defines functions dViolins

Documented in dViolins

#' Create violin plots for any variables of choise
#'
#' Here, assymetrical violin plots for each cluster vs all other clusters are
#' plotted for variables either retrieved from a depeche analysis or
#' user-defined.
#' @param clusterVector Vector with the same length as inDataFrame containing
#' information about the cluster identity of each observation.
#' @param inDataFrame The data used to generate the depecheObject
#' @param plotClusters This vector of numbers define which cluster(s) to plot
#' the violins for. Defaults to all.
#' @param plotElements This provides information on which features to plot. In
#' the typical case, this is the essenceElementList from a depeche run. Other
#' input formats are however accepted: if a vector of column names is provided,
#' then these features will be plotted for all clusters. A custom list of
#' features specific for each cluster is also accepted. A final alternative is
#' to return "all" (default), in which case all markers will be plotted for all
#' clusters.If more than a 100 markers are provided, however, this will return
#' an error.
#' @param colorOrder The order of the cluster colors. Defaults to the order
#' that the unique values in clusterVector occurs.
#' @param colorScale The color scale. Options identical to dColorVector.
#' @param plotDir The name of the created directory.
#' @param createOutput For testing purposes. Defaults to TRUE. If FALSE, no
#' plots are generated.
#' @return One graph is created for each cluster, containing a bean per
#' specified variable.
#' @seealso \code{\link{dDensityPlot}}, \code{\link{dColorPlot}},
#' \code{\link{dColorVector}}, \code{\link{depeche}}
#' @examples
#' # Load some data
#' data(testData)
#'
#' # Run the clustering function. For more rapid example execution,
#' # a depeche clustering of the data is inluded
#' # testDataDepeche <- depeche(testData[,2:15])
#' data(testDataDepeche)
#'
#' # Create the plots of the variables that contribute to creating cluster 3
#' dViolins(testDataDepeche$clusterVector,
#'     inDataFrame = testData,
#'     plotClusters = 3, plotElements = testDataDepeche$essenceElementList
#' )
#' @export dViolins
dViolins <- function(clusterVector, inDataFrame,
                     plotClusters = unique(clusterVector), plotElements = "all",
                     colorOrder = plotClusters, colorScale = "viridis",
                     plotDir = "dViolin_result", createOutput = TRUE) {
    if (createOutput) {
        dir.create(plotDir)
    }

    allClusterCols <- dColorVector(plotClusters,
        colorOrder = colorOrder,
        colorScale = colorScale
    )

    if (length(plotElements) == 1) {
        if (plotElements == "all") {
            plotElements <- colnames(inDataFrame)
            if (length(plotElements) > 100) {
                stop("All features should be plotted, and these are more than ",
                     "100 in total, which is unfeasible. Please specify ", 
                     "something more reasonable for plotElements and try ",
                     "again.")
            }
        }
    }

    if (is.list(plotElements) == FALSE) {
        localPlotElementList <-
            list(plotElements)[rep(1, length(plotClusters))]
        plotElements <- localPlotElementList
    }

    # To reduce the size of the objects involved, all features that should 
    # not be plotted at all are excluded.

    allPlotElements <- unique(unlist(plotElements))

    inDataFrameReduced <- inDataFrame[, allPlotElements]

    # Here the remaining data is truncated.
    inDataFrameTrunc <- dScale(inDataFrameReduced,
        scale = TRUE,
        robustVarScale = FALSE, center = FALSE,
        truncate = TRUE
    )

    # And now, the inner function is applied once for each cluster
    lapply(seq_along(plotClusters), function(x) {
        dViolinsCoFunction(
            clusterNum = plotClusters[x],
            plotElement = plotElements[[x]],
            clusterVector = clusterVector, inDataFrameTrunc = inDataFrameTrunc,
            clusterCol = allClusterCols[x], plotDir = plotDir,
            createOutput = createOutput
        )
    })
}
Theorell/DepecheR documentation built on July 27, 2023, 8:13 p.m.