R/dScaleCoFunction.R

Defines functions dScaleCoFunction

# Used internally in dScale.
# The purpose of having this deeper function is to easily allow for different
# input formats, such as vectors and dataframes.
# For information about the parameters, see dScale.
dScaleCoFunction <- function(x, control, scale, robustVarScale, truncate,
                             center, multiplicationFactor,
                             returnCenter = FALSE) {
    if (is.logical(scale) && scale == FALSE) {
        if (is.logical(truncate)) {
            responseVector <- multiplicationFactor * x
        }
        if (length(truncate) == 2) {
            xTruncReal <- truncateData(x, control,
                lowQuantile = truncate[1],
                highQuantile = truncate[2]
            )
            responseVector <- multiplicationFactor * xTruncReal
        }
    }

    if (length(scale) == 2) {
        # Define quantile
        bottom <- quantile(control, probs = scale[1], se = FALSE, na.rm = TRUE)
        top <- quantile(control, probs = scale[2], se = FALSE, na.rm = TRUE)

        if (robustVarScale == FALSE) {
            if (is.logical(truncate)) {
                responseVector <- multiplicationFactor *
                    ((x - bottom) / (top - bottom))
            }
            if (length(truncate) == 2) {
                xTruncReal <- truncateData(x, control,
                    lowQuantile = truncate[1],
                    highQuantile = truncate[2]
                )
                responseVector <- multiplicationFactor *
                    ((xTruncReal - bottom) / (top - bottom))
            }
        }

        if (robustVarScale) {
            # First truncate the data to the
            # quantiles defined by the quantiles
            xTruncated <- truncateData(x, control,
                lowQuantile = scale[1],
                highQuantile = scale[2]
            )

            sdxTruncated <- sd(xTruncated)

            # Now the data is scaled
            if (is.logical(truncate)) {
                responseVector <- multiplicationFactor * x / sdxTruncated
            }
            if (length(truncate) == 2) {
                xTruncReal <- truncateData(x, control,
                    lowQuantile = truncate[1],
                    highQuantile = truncate[2]
                )
                responseVector <- multiplicationFactor * 
                    xTruncReal / sdxTruncated
            }
        }
    }

    if (center == "mean") {
        meanValue <- mean(responseVector)
        responseVector <- responseVector - meanValue
        if (returnCenter) {
            responseList <- list(responseVector, meanValue)
        }
    }

    if (center == "peak") {
        # The peak of the data is defined
        if (length(x) < 500) {
            nBreaks <- 10
        } else {
            nBreaks <- length(x) / 50
        }
        histdata <- hist(responseVector,
            breaks = nBreaks, plot = FALSE
        )
        zeroPosition <- histdata$mids[match(
            max(histdata$counts),
            histdata$counts
        )]

        # And the position for this this peak is
        # subtracted from all points
        responseVector <- responseVector -
            zeroPosition
        if (returnCenter) {
            responseList <- list(
                responseVector,
                zeroPosition
            )
        }
    }


    if (returnCenter == FALSE) {
        return(responseVector)
    } else {
        return(responseList)
    }
}
Theorell/DepecheR documentation built on July 27, 2023, 8:13 p.m.