## ----installPackage, eval=FALSE--------------------------------------------
# install.packages("devtools")
# library(devtools)
# install_github("TanerArslan/SubCellBarCode-R-Package")
## ----Loadpackage-----------------------------------------------------------
library(SubCellBarCode)
## ----exampleData-----------------------------------------------------------
head(hcc827Ctrl)
## ----markerdata------------------------------------------------------------
head(markerProteins)
## ----loadData--------------------------------------------------------------
df <- loadData(protein.data = hcc827Ctrl)
## ----printDimData----------------------------------------------------------
print(dim(df))
head(df)
## ----coverageMarkers-------------------------------------------------------
c.prots <- calculateCoveredProtein(proteinIDs = rownames(df),
markerproteins = markerProteins[,1])
## ----markerQC--------------------------------------------------------------
r.markers <- markerQualityControl(coveredProteins = c.prots, protein.data = df)
r.markers[1:5]
## ----finalCoverage---------------------------------------------------------
# uncomment the function when running
# f.prots <- calculateCoveredProtein(r.markers, markerProteins[,1])
## ----tsneparameter---------------------------------------------------------
#Default parameters
#Output dimensionality
#dims = 3
#Speed/accuracy trade-off (increase for less accuracy)
#theta = c(0.1, 0.2, 0.3, 0.4, 0.5)
#Perplexity parameter
#perplexity = c(5, 10, 20, 30, 40, 50, 60)
## ----tsnedim3, fig.width = 6.5, fig.height = 6.5---------------------------
set.seed(6)
tsne.map <- tsneVisualization(protein.data = df,
markerProteins = r.markers,
dims = 3,
theta = c(0.1, 0.2, 0.3, 0.4, 0.5),
perplexity = c(5, 10, 20, 30, 40, 50, 60))
## ----tsnedim2--------------------------------------------------------------
set.seed(9)
tsne.map2 <- tsneVisualization(protein.data = df,
markerProteins = r.markers,
dims = 2,
theta = c(0.1, 0.2, 0.3, 0.4, 0.5),
perplexity = c(5, 10, 20, 30, 40, 50, 60))
## ----buildSVM--------------------------------------------------------------
set.seed(2)
cls <- svmClassification(markerProteins = r.markers,
protein.data = df,
markerprot.df = markerProteins)
## ----testdata--------------------------------------------------------------
# testing data predictions for replicate A and B
test.A <- cls[[1]]$svm.test.prob.out
test.B <- cls[[2]]$svm.test.prob.out
head(test.A)
## ----allPred---------------------------------------------------------------
# all predictions for replicate A and B
all.A <- cls[[1]]$all.prot.pred
all.B <- cls[[2]]$all.prot.pred
## ----compartmentThreshold--------------------------------------------------
t.c.df <- computeThresholdCompartment(test.repA = test.A, test.repB = test.B)
## ----headcompartmentThreshold----------------------------------------------
head(t.c.df)
## ----applycompartmentThreshold---------------------------------------------
c.cls.df <- applyThresholdCompartment(all.repA = all.A, all.repB = all.B,
threshold.df = t.c.df)
## ----headcompartmentCls----------------------------------------------------
head(c.cls.df)
## ----neighborhoodThreshold-------------------------------------------------
t.n.df <- computeThresholdNeighborhood(test.repA = test.A, test.repB = test.B)
## ----headneighborhoodThreshold---------------------------------------------
head(t.n.df)
## ----applyNeighborhoodThreshold--------------------------------------------
n.cls.df <- applyThresholdNeighborhood(all.repA = all.A, all.repB = all.B,
threshold.df = t.n.df)
## ----headNeighborhoodCls---------------------------------------------------
head(n.cls.df)
## ----mergecls--------------------------------------------------------------
cls.df <- mergeCls(compartmentCls = c.cls.df, neighborhoodCls = n.cls.df)
## ----headmerge-------------------------------------------------------------
head(cls.df)
## ----hcc827psmcount--------------------------------------------------------
head(hcc827CtrlPSMCount)
## ----plotbarcode, fig.width = 6, fig.height = 6----------------------------
plotBarcode(sampleClassification = cls.df, protein = "TP53",
s1PSM = hcc827CtrlPSMCount)
## ----multipleprots, fig.width= 10, fig.height = 8--------------------------
# 26S proteasome complex (26s proteasome regulatory complex)
proteasome26s <- c("PSMA7", "PSMC3", "PSMB1", "PSMA1", "PSMA3",
"PSMA4", "PSMA5", "PSMB4", "PSMB6", "PSMB5", "PSMC2","PSMC4","PSMB3",
"PSMB2", "PSMD4","PSMA6","PSMC1","PSMC5","PSMC6","PSMB7","PSMD13")
plotMultipleProtein(sampleClassification = cls.df, proteinList = proteasome26s)
## ----headHCC827GEFCls------------------------------------------------------
head(hcc827GEFClass)
## ----sankey, fig.width = 6, fig.height = 3---------------------------------
sankeyPlot(sampleCls1 = cls.df, sampleCls2 = hcc827GEFClass)
## ----headPSMCount----------------------------------------------------------
head(hcc827CtrlPSMCount)
## ----relocation parameters-------------------------------------------------
##parameters
#sampleCls1 = sample 1 classification output
#s1PSM = sample 2 PSM count
#s1Quant = Sample 1 Quantification data
#sampleCls2 = sample 2 classification output
#s2PSM = sample 2 classification output
#sample2Quant = Sample 2 Quantification data
## ----strongCandidates------------------------------------------------------
candidate.df <- candidateRelocatedProteins(sampleCls1 = cls.df,
s1PSM = hcc827CtrlPSMCount,
s1Quant = hcc827Ctrl,
sampleCls2 = hcc827GEFClass,
s2PSM = hcc827GefPSMCount,
s2Quant = hcc827GEF)
## ----printdim--------------------------------------------------------------
print(dim(candidate.df))
## ----printhead-------------------------------------------------------------
head(candidate.df)
## ----strongCandidatesLabel-------------------------------------------------
candidate2.df <- candidateRelocatedProteins(sampleCls1 = cls.df,
s1PSM = hcc827CtrlPSMCount,
s1Quant = hcc827Ctrl,
sampleCls2 = hcc827GEFClass,
s2PSM = hcc827GefPSMCount,
s2Quant = hcc827GEF,
annotation = TRUE,
min.psm = 10,
pearson.cor = 0.1)
## --------------------------------------------------------------------------
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.