#'@title Probability threshold for neighborhood classification
#'@description Thresholds for each neighborhood are decided to get
#' confident predictions.
#'@param test.repA data.frame; test predictions, observation and
#'probablity vectors for each protein in replicate A
#'@param test.repB data.frame; test predictions, observation and
#'probablity vectors for each protein in replicate B
#'@export
#'@examples {
#'
#'df <- loadData(SubCellBarCode::hcc827Ctrl)
#'
#'c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
#'
#'r.markers <- markerQualityControl(c.prots, df)
#'
#'cls <- svmClassification(r.markers, df, markerProteins)
#'
#'test.A <- cls[[1]]$svm.test.prob.out
#'test.B <- cls[[2]]$svm.test.prob.out
#'
#'t.n.df <- computeThresholdNeighborhood(test.A, test.B)
#'}
#'@return threshold.neighborhood.df
computeThresholdNeighborhood <- function(test.repA, test.repB){
couple.lsit <- list(c("Secretory", "S1"), c("Secretory", "S2"),
c("Secretory", "S3"), c("Secretory", "S4"),
c("Nuclear", "N1"), c("Nuclear", "N2"),
c("Nuclear", "N3"), c("Nuclear", "N4"),
c("Cytosol", "C1"), c("Cytosol", "C2"),
c("Cytosol", "C3"), c("Cytosol", "C4"),
c("Cytosol", "C5"), c("Mitochondria", "M1"),
c("Mitochondria", "M2"))
#upgrade compartment labels to neighborhood labels
replaceRows <- function(df, column = c("Observation", "svm.pred")){
multiple.lst <- lapply(couple.lsit, function(f){
temp.df <- df[df[column] == unname(unlist(f[2])), ]
temp.df[[column]] <- as.character(unname(unlist(f[1])))
temp.df
})
replaced.df <- do.call("rbind", multiple.lst)
}
replaceObervation <- replaceRows(df = test.repA, column = "Observation")
neighborhood.repA <- replaceRows(df = replaceObervation,
column = "svm.pred")
replaceObervation <- replaceRows(df = test.repB, column = "Observation")
neighborhood.repB <- replaceRows(df = replaceObervation,
column = "svm.pred")
# concatanate the probabilities for corresponding neighborhood
sumProbability <- function(df){
t.secretory.df <- data.frame(df[, colnames(df)[3:6]])
t.secretory.df$Secretory <- apply(t.secretory.df, 1, sum)
t.nuclear.df <- data.frame(df[, colnames(df)[7:10]])
t.nuclear.df$Nuclear <- apply(t.nuclear.df, 1, sum)
t.cytosol.df <- data.frame(df[, colnames(df)[11:15]])
t.cytosol.df$Cytosol <- apply(t.cytosol.df, 1, sum)
t.Mitochondria.df <- data.frame(df[, colnames(df)[16:17]])
t.Mitochondria.df$Mitochondria <- apply(t.Mitochondria.df, 1, sum)
summed.df <- data.frame(Proteins = rownames(df),
df[,colnames(df)[seq_len(2)]],
Secretory = t.secretory.df$Secretory,
Nuclear = t.nuclear.df$Nuclear,
Cytosol = t.cytosol.df$Cytosol,
Mitochondria = t.Mitochondria.df$Mitochondria)
#temp neighborhood df
t.n.df <- summed.df[,4:7]
summed.df$svm.pred <- colnames(t.n.df)[apply(t.n.df, 1, which.max)]
return(summed.df)
}
sum.repA <- sumProbability(neighborhood.repA)
sum.repB <- sumProbability(neighborhood.repB)
sum.repB <- sum.repB[rownames(sum.repA), ]
#merge two replicates and average them
n.test.repA.match <- sum.repA[sum.repA$svm.pred == sum.repB$svm.pred, ]
n.test.repA.match$Proteins <- rownames(n.test.repA.match)
n.test.repB.match <- sum.repB[sum.repB$svm.pred == sum.repA$svm.pred, ]
n.test.repB.match$Proteins <- rownames(n.test.repB.match)
combined.reps <- rbind(n.test.repA.match, n.test.repB.match)
combined.df <- data.frame(Proteins = combined.reps$Proteins,
combined.reps[, 4:7])
averaged.reps <- aggregate(.~Proteins, data = combined.df, mean)
rownames(averaged.reps) <- averaged.reps$Proteins
averaged.reps <- averaged.reps[rownames(n.test.repA.match), ]
combined.rep.A.B <- data.frame(Proteins = averaged.reps$Proteins,
Observation = n.test.repA.match$Observation,
svm.pred = n.test.repA.match$svm.pred,
averaged.reps[, 2:5])
#estimate the neihborhood theresholds by calculating precision and recall
cls.levels <- c("Secretory", "Nuclear", "Cytosol", "Mitochondria")
results <- lapply(cls.levels, function(l){
cls.df <- combined.rep.A.B[combined.rep.A.B$svm.pred == l, ]
cls.obs.df <- neighborhood.repA[neighborhood.repA$Observation == l, ]
parameters <- lapply(seq(0, 1, 0.001), function(t){
u.df <- cls.df[cls.df[l] >= t, ]
p.cls <- sum(u.df$Observation == u.df$svm.pred)/nrow(u.df)
cls.down.df <- cls.df[cls.df[l] < t,]
r.cls <- (sum(u.df$Observation == u.df$svm.pred))/nrow(cls.obs.df)
f.score <- (2 * p.cls * r.cls) / (p.cls + r.cls)
values <- list(Precision = p.cls,
Recall = r.cls,
fscore= f.score,
threshold = t,
Compartment = l)
})
result.df <- data.frame(do.call(rbind.data.frame, parameters))
up.precision <- result.df[result.df$Precision >= 0.95, ]
recall.threshold <- result.df[!duplicated(result.df[, c('Recall')]), ]
threshold.df <- list(Neighborhood = l,
Precision = up.precision$threshold[1],
Recall = recall.threshold$threshold[2])
})
threshold.neighborhood.df <- data.frame(do.call(rbind, results))
colnames(threshold.neighborhood.df)[2:3] <- c("PrecisionBasedThreshold",
"RecallBasedThreshold")
threshold.neighborhood.df$OptedThreshold <- apply(threshold.neighborhood.df,
1, function(x) max(unlist(x[2]), unlist(x[3])))
return(threshold.neighborhood.df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.