R/load_EC.R

Defines functions load_EC

Documented in load_EC

#' Create a list containing the equivalence classes objects for the single-cell RNA-seq data
#'
#' \code{load_EC} imports the single-cell equivalence classes (computed by alevin-fry), and stores them into a list.
#' 
#' @param path_to_EC_counts a vector of length equals to the number of samples: 
#' each element indicates the path to the equivalence classes counts of the respective sample (i.e., geqc_counts.mtx file).
#' @param path_to_EC a vector of length equals to the number of samples: 
#' each element indicates the path to the equivalence classes of the respective sample (i.e., gene_eqclass.txt.gz file).
#' @param path_to_cell_id a vector of length equals to the number of samples: 
#' each element indicates the path to the cell ids of the respective sample (i.e., quants_mat_rows.txt file).
#' @param path_to_gene_id a vector of length equals to the number of samples: 
#' each element indicates the path to the gene ids of the respective sample (i.e., quants_mat_cols.txt file).
#' @param sample_ids a vector of length equals to the number of samples: 
#' each element indicates the name of the sample.
#' 
#' @return A \code{list} object.
#' 
#' @examples
#' # load internal data to the package:
#' data_dir = system.file("extdata", package = "DifferentialRegulation")
#' 
#' # specify samples ids:
#' sample_ids = paste0("organoid", c(1:3, 16:18))
#' # set directories of each sample input data (obtained via alevin-fry):
#' base_dir = file.path(data_dir, "alevin-fry", sample_ids)
#' file.exists(base_dir)
#' 
#' # set paths to USA counts, cell id, gene id, EC counts and ECs:
#' # Note that alevin-fry needs to be run with `--use-mtx` option
#' # to store counts in a `quants_mat.mtx` file.
#' path_to_cell_id = file.path(base_dir,"/alevin/quants_mat_rows.txt")
#' path_to_gene_id = file.path(base_dir,"/alevin/quants_mat_cols.txt")
#' path_to_EC_counts = file.path(base_dir,"/alevin/geqc_counts.mtx")
#' path_to_EC = file.path(base_dir,"/alevin/gene_eqclass.txt.gz")
#' 
#' # load EC counts:
#' EC_list = load_EC(path_to_EC_counts,
#'                   path_to_EC,
#'                   path_to_cell_id,
#'                   path_to_gene_id,
#'                   sample_ids)
#'
#' @author Simone Tiberi \email{simone.tiberi@unibo.it}
#' 
#' @seealso \code{\link{load_USA}}, \code{\link{DifferentialRegulation}}
#' 
#' @export
load_EC = function(path_to_EC_counts,
                   path_to_EC,
                   path_to_cell_id,
                   path_to_gene_id,
                   sample_ids){
  if( !all(file.exists(path_to_EC_counts)) ){ # if at least 1 file not found
    message("'path_to_EC_counts' files not found")
    return(NULL)
  }
  if( !all(file.exists(path_to_EC)) ){ # if at least 1 file not found
    message("'path_to_EC' files not found")
    return(NULL)
  }
  if( !all(file.exists(path_to_cell_id)) ){ # if at least 1 file not found
    message("'path_to_cell_id' files not found")
    return(NULL)
  }
  if( !all(file.exists(path_to_gene_id)) ){ # if at least 1 file not found
    message("'path_to_gene_id' files not found")
    return(NULL)
  }
  
  n_samples = length(sample_ids)
  
  if( n_samples != length(path_to_EC_counts) ){
    message("sample_ids, path_to_EC_counts, path_to_EC, path_to_cell_id and path_to_gene_id must have the same length")
    return(NULL)
  }
  if( n_samples != length(path_to_EC) ){
    message("sample_ids, path_to_EC_counts, path_to_EC, path_to_cell_id and path_to_gene_id must have the same length")
    return(NULL)
  }
  if( n_samples != length(path_to_cell_id) ){
    message("sample_ids, path_to_EC_counts, path_to_EC, path_to_cell_id and path_to_gene_id must have the same length")
    return(NULL)
  }
  if( n_samples != length(path_to_gene_id) ){
    message("sample_ids, path_to_EC_counts, path_to_EC, path_to_cell_id and path_to_gene_id must have the same length")
    return(NULL)
  }
  
  # TODO: move to parLapply
  
  EC_counts = list_EC_gene_id = list_EC_USA_id = gene_id_list = list()
  for(i in seq_len(n_samples)){
    # load cell id:
    cell_id = fread(path_to_cell_id[[i]], sep = " ", 
                    quote = "", header = FALSE)[[1]]
    # add sample id in front of cell id to distinguish cells across samples.
    cell_id = paste(sample_ids[i], cell_id, sep = ".")
    
    # load EC counts:
    # ECs should have integers only, as.integer requires less memory than as.numeric
    aa = readMM(path_to_EC_counts[[i]])
    
    # check if counts are sparse matrix: if not, turn counts intro Sparce object:
    if(!is(aa, "dgCMatrix")){
      aa = Matrix(data=aa, sparse = TRUE)
    }
    EC_counts[[i]] = aa
    # as.integer(aa)
    # this may create issues later!
    
    rownames(EC_counts[[i]]) = cell_id
    
    # load gene EC:
    EC_genes = fread(path_to_EC[[i]],
                     sep = " ", quote = "", header = FALSE)[[1]]
    
    # gene_id names (corresponding to ids in EC_genes)
    gene_id = fread(path_to_gene_id[[i]], sep = " ", 
                    quote = "", header = FALSE)[[1]]
    
    n_genes = length(gene_id)/3
    gene_id_list[[i]] = gene_id
    # only keep gene ids (first n_genes elements), not its repetition with -U (second n_genes elements) and -A (third n_genes elements):
    gene_id_list[[i]] = gene_id_list[[i]][seq_len(n_genes)]
    
    EC_USA_type = c( rep("S", n_genes),  rep("U", n_genes), rep("A", n_genes) )
    
    # NOW GENE names are 3 * longer!!!
    # transform genes ids from 1...3*n_genes to 1...n_genes.
    transform_ids = as.integer(rep( seq_len(n_genes)-1, 3))
    
    n_EC  = length(EC_genes)-2
    # load EC info:
    X = EC_genes[2 + seq_len(n_EC)] # vector with all transcript ids
    # split info separated by "\t":
    X = strsplit(X,"\t",fixed=TRUE)
    # turn character ids into numeric:
    X = lapply(X, as.integer)
    
    EC_id = 1 + vapply(X, function(x){
      x[length(x)]
    }, FUN.VALUE = integer(1)) # corresponds to rows in EC 
    
    EC_gene_id = lapply(X, function(x){
      x[-length(x)] # transform gene ids -> from 1...3*n_genes to 1...n_genes.
    }) # gene ids as in "gene_id" file.
    rm(X)
    
    # ASSOCIATE SUA splicing state, taken from EC_USA_type:
    EC_USA_type = lapply(EC_gene_id, function(x){
      EC_USA_type[x + 1] # I think + 1
    })
    
    # transform gene ids -> from 1...3*n_genes to 1...n_genes. 
    EC_gene_id = lapply(EC_gene_id, function(x){
      transform_ids[x + 1] # transform gene ids -> from 1...3*n_genes to 1...n_genes.
    }) # gene ids as in "gene_id" file.
    n_distinct_genes_per_EC = vapply(EC_gene_id, length, FUN.VALUE = integer(1))
    
    # turn character ids into numeric:
    EC_USA_type = lapply(EC_USA_type, function(x)
      as.integer(as.integer(factor(x, levels = c("S", "U", "A"))) - 1)
    )
    
    # sort EC so they match col counts in EC_counts
    EC_counts[[i]] = EC_counts[[i]][,EC_id]
    list_EC_gene_id[[i]] = EC_gene_id
    list_EC_USA_id[[i]] = EC_USA_type
    
    # filter ECs with 1 distinct gene only:
    sel_EC = n_distinct_genes_per_EC == 1
    pp = round( 100 * sum(unlist(EC_counts[[i]][,!sel_EC]))/ sum(unlist(EC_counts[[i]])),2) 
    message("The percentage of multi-gene mapping reads in sample '", sample_ids[i], "' is: ", pp)
  }
  
  # check gene_id is the same across samples!
  if(n_samples > 1.5){
    cond = vapply(gene_id_list[seq.int(2, n_samples, by = 1)], function(x) all(gene_id_list[[1]] == x), FUN.VALUE = logical(1) )
    if(!all(cond) ){
      message("gene ids contained in 'path_to_gene_id' are not the same; maybe samples were not aligned and quantifies with the same reference transcriprome?")
      return(NULL)
    }
  }
  
  list(EC_counts = EC_counts,
       list_EC_gene_id = list_EC_gene_id,
       list_EC_USA_id = list_EC_USA_id,
       gene_id = gene_id_list[[1]]) # keep only the gene id from the 1st 
}
SimoneTiberi/DifferentialRegulation documentation built on Aug. 22, 2024, 7:43 a.m.