#' dpt_test
#' @param time Vector of diffusion pseudo time.
#' @param index index returned by \emph{get_heteroplasmy}.
#' @param method Character name denoting the method to choose for assigning an
#' adjusted p value to each of the bases. Can be one of GAM, pearson and
#' spearman. GAM: For each base, a GAM fit with formula z ~ lo(t) is performed
#' between the heteroplasmy values (z) and the time (t). The p value from the
#' table "Anova for Parametric Effects" is then assigned to the base.
#' pearson,spearman:for each base, a pearson or spearman correlation test is
#' performed between the heteroplasmy values and the time . The p value
#' obtained from the test is then assigned to the base. In all the three
#' possible methods, all the p values are then corrected with the method FDR.
#' @inheritParams plot_heteroplasmy
#' @return A data frame with 2 columns and number of rows equal to n_col in
#' \emph{heteroplasmy_matrix}. In the first column there are the names of the bases
#' while in the second column there are the adjusted p value.
#' @author Gabriele Lubatti \email{gabriele.lubatti@@helmholtz-muenchen.de}
#' @seealso \url{https://www.rdocumentation.org/packages/gam/versions/1.20/topics/gam}
#' @export dpt_test
dpt_test <- function(heteroplasmy_matrix, time, index = NULL, method = "GAM")
{
if (is.null(index)) {
position <- colnames(heteroplasmy_matrix)
p_value <- rep(0, length(position))
for (i in 1:length(position)) {
Y <- data.frame(t(heteroplasmy_matrix[, position[i]]))
t <- time
if (method != "GAM") {
p_value[i] <- cor.test(as.numeric(Y), t, method = method)$p.value
}
if (method == "GAM") {
if (! requireNamespace("gam", quietly = TRUE)) {
stop("Package gam needed for method==gam. Please install it: install.packages('gam')")
}
gam.res <- apply(Y, 1, function(z) {
z <- as.numeric(as.vector(z))
d <- data.frame(z = z, t = t)
tmp <- gam::gam(z ~ gam::lo(t), data = d)
p <- summary(tmp)[4][[1]][1, 5]
f <- fitted(tmp)
c(p, f)
})
genes.table <- data.frame(genes.names = rownames(Y))
genes.table$pvals <- gam.res[1, ]
genes.table$FDR <- p.adjust(genes.table$pvals, method = "fdr")
genes.table <- genes.table[order(genes.table$FDR), ]
genes.table$genes.names <- as.character(genes.table$genes.names)
row.names(genes.table) <- genes.table$genes.names
results.gam.tot <- genes.table
gam.fitted <- gam.res[-1, ]
results_gam_nomi <- results.gam.tot$genes.names
gam_fitted <- gam.fitted
p_value[i] <- results.gam.tot$pvals
}
}
}
else {
position <- colnames(heteroplasmy_matrix)
p_value <- rep(0, length(position))
for (i in 1:length(position)) {
Y <- data.frame(t(heteroplasmy_matrix[as.numeric(index[[position[i]]]), position[i]]))
t <- time[as.numeric(index[[position[i]]])]
if (method != "GAM") {
p_value[i] <- cor.test(as.numeric(Y), t, method = method)$p.value
}
if (method == "GAM") {
if (! requireNamespace("gam", quietly = TRUE)) {
stop("Package gam needed for method==gam. Please install it: install.packages('gam')")
}
gam.res <- apply(Y, 1, function(z) {
z <- as.numeric(as.vector(z))
d <- data.frame(z = z, t = t)
tmp <- gam::gam(z ~ gam::lo(t), data = d)
p <- summary(tmp)[4][[1]][1, 5]
f <- fitted(tmp)
c(p, f)
})
genes.table <- data.frame(genes.names = rownames(Y))
genes.table$pvals <- gam.res[1, ]
genes.table$FDR <- p.adjust(genes.table$pvals, method = "fdr")
genes.table <- genes.table[order(genes.table$FDR), ]
genes.table$genes.names <- as.character(genes.table$genes.names)
row.names(genes.table) <- genes.table$genes.names
results.gam.tot <- genes.table
gam.fitted <- gam.res[-1, ]
results_gam_nomi <- results.gam.tot$genes.names
gam_fitted <- gam.fitted
p_value[i] <- results.gam.tot$pvals
}
}
}
fdr_update <- p.adjust(p_value, method = "fdr")
position_fdr <- data.frame(fdr_update, colnames(heteroplasmy_matrix))
colnames(position_fdr) <- c("FDR_value", "Position")
row.names(position_fdr) <- colnames(heteroplasmy_matrix)
position_fdr <- position_fdr[order(position_fdr$FDR_value), ]
return(position_fdr)
}
#' get_wilcox_test
#' @param label_1 Character name of a first label included in cluster. It
#' denotes the first group used for the Wilcoxon test
#' @param label_2 Character name of a second label included in cluster and
#' different from label_1. it denotes the second group used for the Wilcoxon
#' test.
#' @inheritParams plot_heteroplasmy
#' @return It returns a vector of length equal to n_row in matrix. Each element
#' stands for a base and it contains the adjusted p-value (FDR), obtained in
#' unpaired two-samples Wilcoxon test from the comparison of the heteroplasmy
#' between the label_1 and label_2 group.
#' @author Gabriele Lubatti \email{gabriele.lubatti@@helmholtz-muenchen.de}
#' @seealso \url{https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test}
#' @export get_wilcox_test
get_wilcox_test <- function(heteroplasmy_matrix, cluster, label_1, label_2, index = NULL) {
base=colnames(heteroplasmy_matrix)
distribution = rep(0, length(base))
if (is.null(index)) {
for (i in 1:length(base)) {
Y = as.vector(heteroplasmy_matrix[, base[i]])
Y_label_1 = Y[cluster == label_1]
Y_label_2 = Y[cluster == label_2]
Y_label_all = c(Y_label_1, Y_label_2)
name_label_1 = rep(label_1, length(Y_label_1))
name_label_2 = rep(label_2, length(Y_label_2))
name_label_all = c(name_label_1, name_label_2)
data_test = data.frame(Y_label_all, name_label_all)
colnames(data_test) = c("Heteroplasmy", "Cluster")
res <- wilcox.test( Heteroplasmy~ Cluster, data = data_test)
distribution[i] = res$p.value
if (is.nan(res$p.value)&all(Y_label_all == 0)) {
distribution[i] = 1
}
names(distribution)[i] = base[i]
}}
else{
for (i in 1:length(base)) {
index_cell = index[[which(names(index) == base[i])]]
cluster_index = cluster[index_cell]
Y = as.vector(heteroplasmy_matrix[index_cell, base[i]])
Y_label_1 = Y[cluster_index == label_1]
Y_label_2 = Y[cluster_index == label_2]
Y_label_all = c(Y_label_1, Y_label_2)
name_label_1 = rep(label_1, length(Y_label_1))
name_label_2 = rep(label_2, length(Y_label_2))
name_label_all = c(name_label_1, name_label_2)
data_test = data.frame(Y_label_all, name_label_all)
colnames(data_test) = c("Heteroplasmy", "Cluster")
res <- wilcox.test( Heteroplasmy~ Cluster, data = data_test)
distribution[i] = res$p.value
if (is.nan(res$p.value)&all(Y_label_all == 0)) {
distribution[i] = 1
}
names(distribution)[i] = base[i]
}}
distribution_adjusted = p.adjust(distribution, method = "fdr")
return(distribution_adjusted)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.