R/statistical_test.R

Defines functions get_wilcox_test dpt_test

Documented in dpt_test get_wilcox_test

#' dpt_test
#' @param time Vector of diffusion pseudo time.
#' @param index index returned by \emph{get_heteroplasmy}.
#' @param method Character name denoting the method to choose for assigning an
#' adjusted p value to each of the bases. Can be one of GAM, pearson and
#' spearman. GAM: For each base, a GAM fit with formula z ~ lo(t) is performed
#' between the heteroplasmy values (z) and the time (t). The p value from the
#' table "Anova for Parametric Effects" is then assigned to the base.
#' pearson,spearman:for each base, a pearson or spearman correlation test is
#' performed between the heteroplasmy values and the time . The p value
#' obtained from the test is then assigned to the base. In all the three
#' possible methods, all the p values are then corrected with the method FDR.
#' @inheritParams plot_heteroplasmy
#' @return A data frame with 2 columns and number of rows equal to n_col in
#' \emph{heteroplasmy_matrix}. In the first column there are the names of the bases
#' while in the second column there are the adjusted p value.
#' @author Gabriele Lubatti \email{gabriele.lubatti@@helmholtz-muenchen.de}
#' @seealso \url{https://www.rdocumentation.org/packages/gam/versions/1.20/topics/gam}
#' @export dpt_test
dpt_test <- function(heteroplasmy_matrix, time, index = NULL, method = "GAM")
{
  if (is.null(index)) {
    position <- colnames(heteroplasmy_matrix)
    p_value <- rep(0, length(position))
    for (i in 1:length(position)) {
      Y <- data.frame(t(heteroplasmy_matrix[, position[i]]))
      t <- time
      if (method != "GAM") {
        p_value[i] <- cor.test(as.numeric(Y), t, method = method)$p.value
      }
      if (method == "GAM") {
        if (! requireNamespace("gam", quietly = TRUE)) {
          stop("Package gam needed for method==gam. Please install it: install.packages('gam')")
        }
        gam.res <- apply(Y, 1, function(z) {
          z <- as.numeric(as.vector(z))
          d <- data.frame(z = z, t = t)
          tmp <- gam::gam(z ~ gam::lo(t), data = d)
          p <- summary(tmp)[4][[1]][1, 5]
          f <- fitted(tmp)
          c(p, f)
        })
        genes.table <- data.frame(genes.names = rownames(Y))
        genes.table$pvals <- gam.res[1, ]
        genes.table$FDR <- p.adjust(genes.table$pvals, method = "fdr")
        genes.table <- genes.table[order(genes.table$FDR), ]
        genes.table$genes.names <- as.character(genes.table$genes.names)
        row.names(genes.table) <- genes.table$genes.names
        results.gam.tot <- genes.table
        gam.fitted <- gam.res[-1, ]
        results_gam_nomi <- results.gam.tot$genes.names
        gam_fitted <- gam.fitted
        p_value[i] <- results.gam.tot$pvals
      }
    }
  }
  else {
    position <- colnames(heteroplasmy_matrix)
    p_value <- rep(0, length(position))
    for (i in 1:length(position)) {
      Y <- data.frame(t(heteroplasmy_matrix[as.numeric(index[[position[i]]]), position[i]]))
      t <- time[as.numeric(index[[position[i]]])]
      if (method != "GAM") {
        p_value[i] <- cor.test(as.numeric(Y), t, method = method)$p.value
      }
      if (method == "GAM") {
        if (! requireNamespace("gam", quietly = TRUE)) {
          stop("Package gam needed for method==gam. Please install it: install.packages('gam')")
        }
        gam.res <- apply(Y, 1, function(z) {
          z <- as.numeric(as.vector(z))
          d <- data.frame(z = z, t = t)
          tmp <- gam::gam(z ~ gam::lo(t), data = d)
          p <- summary(tmp)[4][[1]][1, 5]
          f <- fitted(tmp)
          c(p, f)
        })
        genes.table <- data.frame(genes.names = rownames(Y))
        genes.table$pvals <- gam.res[1, ]
        genes.table$FDR <- p.adjust(genes.table$pvals, method = "fdr")
        genes.table <- genes.table[order(genes.table$FDR), ]
        genes.table$genes.names <- as.character(genes.table$genes.names)
        row.names(genes.table) <- genes.table$genes.names
        results.gam.tot <- genes.table
        gam.fitted <- gam.res[-1, ]
        results_gam_nomi <- results.gam.tot$genes.names
        gam_fitted <- gam.fitted
        p_value[i] <- results.gam.tot$pvals
      }
    }
  }
  fdr_update <- p.adjust(p_value, method = "fdr")
  position_fdr <- data.frame(fdr_update, colnames(heteroplasmy_matrix))
  colnames(position_fdr) <- c("FDR_value", "Position")
  row.names(position_fdr) <- colnames(heteroplasmy_matrix)
  position_fdr <- position_fdr[order(position_fdr$FDR_value), ]
  return(position_fdr)
}





#' get_wilcox_test
#' @param label_1 Character name of a first label included in cluster. It
#' denotes the first group used for the Wilcoxon test
#' @param label_2 Character name of a second label included in cluster and
#' different from label_1. it denotes the second group used for the Wilcoxon
#' test.
#' @inheritParams plot_heteroplasmy
#' @return It returns a vector of length equal to n_row in matrix. Each element
#' stands for a base and it contains the adjusted p-value (FDR), obtained in
#' unpaired two-samples Wilcoxon test from the comparison of the heteroplasmy
#' between the label_1 and label_2 group.
#' @author Gabriele Lubatti \email{gabriele.lubatti@@helmholtz-muenchen.de}
#' @seealso \url{https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test}
#' @export get_wilcox_test
get_wilcox_test <- function(heteroplasmy_matrix, cluster, label_1, label_2, index =  NULL) {
  base=colnames(heteroplasmy_matrix)
  distribution =  rep(0, length(base))
  if (is.null(index)) {
    for (i in 1:length(base)) {
      Y =  as.vector(heteroplasmy_matrix[, base[i]])
      Y_label_1 =  Y[cluster ==  label_1]
      Y_label_2 =  Y[cluster ==  label_2]
      Y_label_all =  c(Y_label_1, Y_label_2)
      name_label_1 =  rep(label_1, length(Y_label_1))
      name_label_2 =  rep(label_2, length(Y_label_2))
      name_label_all =  c(name_label_1, name_label_2)
      data_test =  data.frame(Y_label_all, name_label_all)
      colnames(data_test) =  c("Heteroplasmy", "Cluster")

      res <- wilcox.test( Heteroplasmy~ Cluster, data =  data_test)
      distribution[i] =  res$p.value
      if (is.nan(res$p.value)&all(Y_label_all ==  0)) {
        distribution[i] =  1
      }
      names(distribution)[i] =  base[i]




    }}



  else{

    for (i in 1:length(base)) {
      index_cell =  index[[which(names(index) ==  base[i])]]

      cluster_index =  cluster[index_cell]
      Y =  as.vector(heteroplasmy_matrix[index_cell, base[i]])
      Y_label_1 =  Y[cluster_index ==  label_1]
      Y_label_2 =  Y[cluster_index ==  label_2]
      Y_label_all =  c(Y_label_1, Y_label_2)
      name_label_1 =  rep(label_1, length(Y_label_1))
      name_label_2 =  rep(label_2, length(Y_label_2))
      name_label_all =  c(name_label_1, name_label_2)
      data_test =  data.frame(Y_label_all, name_label_all)
      colnames(data_test) =  c("Heteroplasmy", "Cluster")

      res <- wilcox.test( Heteroplasmy~ Cluster, data = data_test)
      distribution[i] =  res$p.value
      if (is.nan(res$p.value)&all(Y_label_all ==  0)) {
        distribution[i] =  1
      }
      names(distribution)[i] =  base[i]

    }}
  distribution_adjusted =  p.adjust(distribution, method =  "fdr")
  return(distribution_adjusted)
}
ScialdoneLab/MitoHEAR documentation built on June 11, 2022, 7:18 a.m.