#' @title inter network
#' @description Computes intercellular gene networks.
#'
#' @details `signal` is a list containing the cell-cell interaction tables. It
#' is the result of the **cell_signaling()** function.
#' @details
#' If the user does not set `c.names`, the clusters will be named from 1 to the
#' maximum number of clusters (cluster 1, cluster 2, ...). The user can exploit
#' the `c.names` vector in the list returned by the **cell_classifier()**
#' function for this purpose. The user can also provide her own cluster names.
#' @details
#' `species` must be equal to "homo sapiens" or "mus musculus". In the case of
#' mouse data, the function converts mouse genes in human orthologs
#' (according to Ensembl) such that the Reactome/KEGG interaction database can
#' be exploited, and finally output genes are converted back to mouse.
#' @details
#' If `write` is TRUE, then the function writes four different files. A graphML
#' file in the *cell-signaling* folder for intercellular interactions between
#' each pair of clusters named "intercell_network_Z~1~-Z~2~.graphml", where
#' Z~1~ and Z~2~ are the *c.names* of the clusters. A graphML file in the
#' *cell-signaling* folder that contains a compilation of all the intercellular,
#' ligand-receptor interactions named "full-intercellular-network.graphml".
#' A text and a graphML file in the *networks* folder containing the intracellular
#' network for each cell cluster named "intracell_network_Z.txt" and
#' "intracell_network_Z.graphml", where Z is the *c.names* of the cluster.
#'
#' @param data a data frame of n rows (genes) and m columns (cells) of read or
#' UMI counts (note : rownames(data)=genes)
#' @param genes a character vector of HUGO official gene symbols of length n
#' @param cluster a numeric vector of length m
#' @param signal a list (result of the **cell_signaling()** function)
#' @param c.names (optional) cluster names
#' @param species "homo sapiens" or "mus musculus"
#' @param write a logical (if TRUE writes graphML and text files for the
#' interface and internal networks)
#' @param plot a logical
#' @param verbose a logical
#'
#' @return The function returns a list containing the tables of interaction
#' between two cell types and the table for the full network of all the cell
#' types.
#'
#' @export
#'
#' @importFrom igraph graph_from_data_frame set_vertex_attr write.graph V %>%
#' @import data.table
#'
#' @examples
#'m <- data.frame(cell.1=runif(10,0,2),cell.2=runif(10,0,2),cell.3=runif(10,0,2),
#'cell.4 <- runif(10,0,2),cell.5=runif(10,0,2),cell.6=runif(10,0,2),cell.7=
#'runif(10,0,2))
#'rownames(m) <- paste("gene", seq_len(10))
#'cluster <- c(1,1,1,2,3,3,2)
#'inter_network(m,rownames(m),cluster,signal=NULL)
inter_network <- function(data,genes,cluster,signal,c.names=NULL,
species=c("homo sapiens","mus musculus"),
write=TRUE,plot=FALSE,verbose=TRUE){
if (dir.exists("networks")==FALSE & write==TRUE){
dir.create("networks")
}
if (is.null(c.names)==TRUE){
c.names <- paste("cluster",seq_len(max(cluster)))
}
if (min(cluster)!=1){
cluster <- cluster + 1 - min(cluster)
}
if (length(c.names)!=max(cluster) | sum(duplicated(c.names))>0 |
grepl("/",paste(c.names,collapse =""))){
stop("The length of c.names must be equal to the number of clusters and
must contain no duplicates. The cluster names must not include special
characters")
}
cellint <- NULL
rownames(data) <- genes
interface <- list()
species <- match.arg(species)
if (species=='mus musculus'){
Hs2mm <- mm2Hs[,1]
mm2Hs <- mm2Hs[,2]
names(mm2Hs) <- Hs2mm
names(Hs2mm) <- as.character(mm2Hs)
m.names <- mm2Hs[rownames(data)]
data <- subset(data,(!is.na(m.names)))
m.names <- m.names[!is.na(m.names)]
rownames(data)<-as.character(m.names)
}
# Interface networks ========================================================
tmp <- vector("list",length=length(signal))
if (is.null(signal)==FALSE){
for (i in seq_len(length(signal))){
ci <- signal[[i]]
from <- names(ci)[1]
to <- names(ci)[2]
tmp[[i]] <- data.frame(ligand=paste0(from,".",ci[[1]]),receptor=
paste0(to,".",ci[[2]]),ligand.name=ci[[1]],
receptor.name=ci[[2]],origin=from,destination=to,ci[,3:4],
stringsAsFactors=FALSE)
}
cellint <- do.call("rbind",tmp)
# Pair networks ----------------
m <- 0
n.int <- NULL
for (i in seq_len(length(signal))){
m <- m+1
subpop <- colnames(signal[[i]])[1]
other <- colnames(signal[[i]])[2]
cell.n <- cellint[cellint$origin==subpop & cellint$destination==other,]
n.int=c(n.int,paste(subpop, other, sep="-"))
if (verbose==TRUE){
cat("Doing",subpop,"and",other,"...")
}
l.both <- intersect(cell.n$ligand[cell.n$origin==subpop],
cell.n$ligand[cell.n$origin==other])
for (l in l.both){
k <- which(cell.n$ligand==l & cell.n$origin==other)
cell.n$ligand[k] <- paste("bis",l)
}
r.both <- intersect(cell.n$receptor[cell.n$origin==subpop],
cell.n$receptor[cell.n$origin==other])
for (r in r.both){
k <- which(cell.n$receptor==r & cell.n$origin==other)
cell.n$receptor[k] <- paste("bis",r)
}
if (is.null(dim(cell.n))==FALSE){
g.cell <- graph_from_data_frame(cell.n,directed=TRUE)
genes <- c(cell.n$ligand,cell.n$receptor)
prop.genes <- unique(data.frame(gene=genes,display.name=
gsub("^bis ","",genes),
gene.type=c(rep("ligand",nrow(cell.n)),
rep("receptor",
nrow(cell.n))),
expressed.in=c(cell.n$origin,
cell.n$destination),
stringsAsFactors=FALSE))
prop.genes <- subset(prop.genes,!duplicated(prop.genes[[1]]))
rownames(prop.genes) <- prop.genes[[1]]
g.cell <- g.cell %>% set_vertex_attr(
name="display.name",value=prop.genes[V(g.cell)$name,
"display.name"]) %>%
set_vertex_attr(name="gene.type",value=prop.genes[V(g.cell)$name,
"gene.type"]) %>%
set_vertex_attr(name="expressed.in",value=prop.genes[V(g.cell)$name,
"expressed.in"])
if (write==TRUE){
write.graph(g.cell,file=paste0('./networks/intercell_network_',
subpop,'-',other,'.graphml'),
format="graphml")
}
interface[[m]]=cell.n
} else {
interface[[m]]="No network"
}
cat(' OK', fill=TRUE)
}
names(interface) <- n.int
# Full network ----------------
g.cell <- graph_from_data_frame(cellint[,c(1,2,7,8)],directed=TRUE)
genes <- c(cellint$ligand,cellint$receptor)
prop.genes <- unique(data.frame(gene=genes,display.name=
c(cellint$ligand.name,
cellint$receptor.name),
gene.type=c(rep("ligand",nrow(cellint)),
rep("receptor",nrow(cellint))),
stringsAsFactors=FALSE))
prop.genes <- subset(prop.genes,!duplicated(prop.genes[[1]]))
rownames(prop.genes) <- prop.genes[[1]]
g.cell <- g.cell %>% set_vertex_attr(name="display.name",
value=prop.genes[V(g.cell)$name,
"display.name"]) %>%
set_vertex_attr(name="gene.type",
value=prop.genes[V(g.cell)$name,"gene.type"])
prop.genes <- unique(data.frame(gene=genes,
display.name=c(cellint$ligand.name,
cellint$receptor.name),
expressed.in=c(cellint$origin,
cellint$destination),
stringsAsFactors=FALSE))
prop.genes <- subset(prop.genes,!duplicated(prop.genes[[1]]))
rownames(prop.genes) <- prop.genes[[1]]
g.cell <- g.cell %>% set_vertex_attr(name="expressed.in",
value=prop.genes[V(g.cell)$name,
"expressed.in"])
if (write==TRUE){
write.graph(g.cell,file=
paste0('./networks/full-intercellular-network.graphml'),
format="graphml")
}
if (plot==TRUE){
g.plot <- graph_from_data_frame(cellint,directed=FALSE)
tmp <- do.call(rbind,strsplit(unique(c(cellint$ligand,cellint$receptor)),split=".",fixed=TRUE))
cr <- rainbow(max(cluster))
names(cr) <- c.names
V(g.plot)$vertex.label <- do.call(rbind,strsplit(unique(c(cellint$ligand,cellint$receptor)),split=".",fixed=TRUE))[,2]
V(g.plot)$label.color <- "black"
V(g.plot)$color <- cr[tmp[,1]]
V(g.plot)$shape <- c("circle")
V(g.plot)$shape[unique(c(cellint$ligand,cellint$receptor)) %in% cellint$receptor] <- c("square")
V(g.plot)$size <- 10
E(g.plot)$width <- cellint$LRscore*4
E(g.plot)$color <- "gray30"
plot(g.plot,vertex.label=V(g.plot)$vertex.label,main="Intercellular communication network")
legend("bottomleft",legend=c.names,fill=cr)
legend("topleft",legend=c("ligand","receptor"),pch=c(1,0))
}
}
res <- list(interface,cellint[,c(1,2,7,8)])
names(res) <- c("individual-networks","full-network")
return(res)
}
#' simplify_interactions
#'
#' @param t the network to be simplified
#' @param lr ligand receptor interactions
#' @param autocrine a logical
#'
#' @return t
#' @export
#'
#' @examples
#' t=data.frame(a.gn=c("CEP63","CEP63"),b.gn=c("MZT2A","DYNC1L2"),
#' type=c("in-complex-with","in-complex-with"))
#' simplify_interactions(t)
simplify_interactions <- function(t,lr=NULL,autocrine=FALSE){
mergeText <- function(a,b){
if (length(a)==0)
b
else
if (length(b)==0)
a
else
paste(union(strsplit(a,';')[[1]],strsplit(b,';')[[1]]),collapse=';')
}
t$detailed.type <- t$type
# reduce interaction types
t$type[t$type %in% c('interacts-with','in-complex-with')] <- 'complex'
t$type[t$type %in% c('chemical-affects','consumption-controlled-by',
'controls-expression-of','controls-phosphorylation-of',
'controls-production-of','controls-state-change-of',
'controls-transport-of',
'controls-transport-of-chemical')] <- 'control'
t$type[t$type %in% c('catalysis-precedes','reacts-with',
'used-to-produce')] <- 'reaction'
# merge duplicated interactions with same reduced type
key <- paste(t$a.gn,t$b.gn,t$type,sep='|')
dk <- which(duplicated(key))
for (i in dk){
jj <- setdiff(which(t$a.gn==t[i,"a.gn"] & t$b.gn==t[i,"b.gn"] &
t$type==t[i,"type"]),i)
for (j in jj){
# t[j,"pmid"] <- mergeText(t[j,"pmid"],t[i,"pmid"])
t[j,"pathway"] <- mergeText(t[j,"pathway"],t[i,"pathway"])
t[j,"detailed.type"] <- mergeText(t[j,"detailed.type"],t[i,
"detailed.type"])
}
}
if (length(dk)>0)
t <- t[-dk,]
# promote interaction types in case one interaction is still given for
# multiple "reduced" interaction types
key <- paste(t$a.gn,t$b.gn,sep='|')
dk <- which(duplicated(key))
for (i in dk){
jj <- setdiff(which(t$a.gn==t[i,"a.gn"] & t$b.gn==t[i,"b.gn"]),i)
for (j in jj){
# t[j,"pmid"] <- mergeText(t[j,"pmid"],t[i,"pmid"])
t[j,"pathway"] <- mergeText(t[j,"pathway"],t[i,"pathway"])
t[j,"detailed.type"] <- mergeText(t[j,"detailed.type"],t[i,
"detailed.type"])
if (t$type[j]!='control'){
if (t$type[i]=='control' || t$type[i]=='complex')
t$type[j] <- t$type[i]
}
}
}
if (length(dk)>0)
t <- t[-dk,]
# eliminate reverse interactions
l.key <- paste(t$a.gn,t$b.gn,sep='|')
r.key <- paste(t$b.gn,t$a.gn,sep='|')
rk <- which(r.key%in%l.key)
to.remove <- NULL
for (i in rk){
j <- setdiff(which(t$a.gn==t[i,"b.gn"] & t$b.gn==t[i,"a.gn"]),i)
if (j < i){
# t[j,"pmid"] <- mergeText(t[j,"pmid"],t[i,"pmid"])
t[j,"pathway"] <- mergeText(t[j,"pathway"],t[i,"pathway"])
t[j,"detailed.type"] <- mergeText(t[j,"detailed.type"],t[i,
"detailed.type"])
if (t$type[j]!='control'){
if (t$type[i]=='control'){
t$type[j] <- 'control'
t$a.gn[j] <- t$a.gn[i]
t$b.gn[j] <- t$b.gn[i]
}
else
if (t$type[i]=='complex')
t$type[j] <- 'complex'
}
to.remove <- c(to.remove,i)
}
}
if (length(to.remove)>0)
t <- t[-to.remove,]
# interactions between 2 ligands or 2 receptors are removed unless 'complex'
bad <- ((t$a.gn%in%lr$ligand & t$b.gn%in%lr$ligand) |
(t$a.gn%in%lr$receptor & t$b.gn%in%lr$receptor)) & t$type!='complex'
t <- t[!bad,]
if (!autocrine && !is.null(lr)){
# remove LR pairs
bad <- (t$a.gn%in%lr$ligand & t$b.gn%in%lr$receptor) |
(t$a.gn%in%lr$receptor & t$b.gn%in%lr$ligand)
t <- t[!bad,]
}
return(t)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.