Limma_export | R Documentation |
Prepares Limma object for visualization
Limma_export(
limmafit = NULL,
design_data = NULL,
Expression_dat = NULL,
method = "global",
adjust.method = "BH",
p.value = 0.1
)
limmafit |
the fit generated by limma |
design_data |
data.frame containing Experimental design |
Expression_dat |
R object containing the expression data used for limma differential expression analysis. |
method |
character string specifying how genes and contrasts are to be combined in the multiple testing scheme. Choices are |
adjust.method |
character string specifying p-value adjustment method. Possible values are |
p.value |
numeric value between 0 and 1 giving the required family-wise error rate or false discovery rate. |
list of R objects needed for Shiny_DE_viz function
Example_Hotgenes_dir<-system.file("extdata",
"Example_Hotgenes.Rdata",
package = "Hotgenes", mustWork = TRUE)
load(Example_Hotgenes_dir)
library(limma)
exp<-Example_Hotgenes$Normalized_Expression$rld
design_m<-Example_Hotgenes$design_data
design_matrix <- model.matrix(~sh*Hrs+Bio_Rep,
data = design_m)
aw <- arrayWeights(exp, design_matrix)
fit <- lmFit(exp, design=design_matrix, weights = aw)
fit <- eBayes(fit, robust = TRUE)
L_out<-Limma_export(Expression_dat = exp,
design_data = design_m,
limmafit = fit)
summary(L_out$Output_lists)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.