#' LIMMA with \code{voom}
#'
#' Limma is run after variance stabilization with \code{voom} using \code{edgeR} normalized library sizes
#' @param data Either a matrix with counts/abundances, OR a \code{phyloseq} object. If a matrix/data.frame is provided rows should be taxa/genes/proteins and columns samples
#' @param predictor The predictor of interest. Either a Factor or Numeric, OR if \code{data} is a \code{phyloseq} object the name of the variable in \code{sample_data(data)} in quotation
#' @param paired For paired/blocked experimental designs. Either a Factor with Subject/Block ID for running paired/blocked analysis, OR if \code{data} is a \code{phyloseq} object the name of the variable in \code{sample_data(data)} in quotation
#' @param covars Either a named list with covariables, OR if \code{data} is a \code{phyloseq} object a character vector with names of the variables in \code{sample_data(data)}
#' @param out.all If TRUE will output results from F-tests, if FALSE t-statistic results from 2. level of the \code{predictor}. If NULL (default) set as TRUE for multi-class predictors and FALSE otherwise
#' @param p.adj Character. P-value adjustment. Default "fdr". See \code{p.adjust} for details
#' @param coeff Integer. The p-value and log2FoldChange will be associated with this coefficient. Default 2, i.e. the 2. level of the \code{predictor}.
#' @param allResults If TRUE will return raw results from the \code{eBayes} function
#' @param ... Additional arguments for the \code{voom}, \code{eBayes} and \code{lmFit} functions
#' @return A data.frame with with results.
#' @examples
#' # Creating random count_table and predictor
#' set.seed(4)
#' mat <- matrix(rnbinom(1000, size = 0.1, mu = 500), nrow = 100, ncol = 10)
#' rownames(mat) <- 1:100
#' pred <- c(rep("Control", 5), rep("Treatment", 5))
#'
#' # Running limma
#' res <- DA.vli(data = mat, predictor = pred)
#' @export
DA.vli <- function(data, predictor, paired = NULL, covars = NULL, out.all = NULL, p.adj = "fdr", coeff = 2, allResults = FALSE, ...){
ok <- tryCatch({
if(is.null(paired)){loadNamespace(c("edgeR","limma"))} else {loadNamespace(c("edgeR","limma","statmod"))}
TRUE
}, error=function(...) FALSE)
if (ok){
# Extract from phyloseq
if(is(data, "phyloseq")){
DAdata <- DA.phyloseq(data, predictor, paired, covars)
count_table <- DAdata$count_table
predictor <- DAdata$predictor
paired <- DAdata$paired
covars <- DAdata$covars
} else {
count_table <- data
}
if(!is.null(covars)){
for(i in seq_along(covars)){
assign(names(covars)[i], covars[[i]])
}
}
# out.all
if(is.null(out.all)){
if(length(unique(predictor)) == 2) out.all <- FALSE
if(length(unique(predictor)) > 2) out.all <- TRUE
if(is.numeric(predictor)) out.all <- FALSE
}
# Arguments
limma.args <- list(...)
lmFit.args <- limma.args[names(limma.args) %in% names(formals(limma::lmFit))]
eBayes.args <- limma.args[names(limma.args) %in% names(formals(limma::eBayes))]
voom.args <- limma.args[names(limma.args) %in% names(formals(limma::voom))]
count_table <- as.data.frame(count_table)
# Define model
if(is.null(covars)){
form <- paste("~ predictor")
} else {
if(is(data, "phyloseq")){
form <- paste("~ predictor+",paste(covars, collapse="+"),sep = "")
} else {
form <- paste("~ predictor+",paste(names(covars), collapse="+"),sep = "")
}
}
design <- model.matrix(as.formula(form))
# Variance stabilization
nf <- edgeR::calcNormFactors(count_table)
voo <- do.call(limma::voom,c(list(count_table, design, lib.size=colSums(count_table)*nf),voom.args))
# Fit linear model
if(is.null(paired)){
fit <- do.call(limma::lmFit,c(list(voo, design),lmFit.args))
} else {
dupcor <- limma::duplicateCorrelation(count_table, design, block = paired)
fit <- do.call(limma::lmFit,c(list(voo, design, block = paired, correlation = dupcor$cor),lmFit.args))
}
# Fit empirical bayes
fit.eb <- do.call(limma::eBayes, c(list(fit),eBayes.args))
# Extract results
if(is.numeric(predictor[1])){
res <- limma::topTable(fit.eb, number = nrow(count_table), adjust.method = p.adj, coef = 2)
colnames(res)[4:5] <- c("pval","pval.adj")
} else {
if(out.all){
res <- limma::topTable(fit.eb, number = nrow(count_table), adjust.method = p.adj, coef = 2:length(levels(as.factor(predictor))))
colnames(res)[length(levels(as.factor(predictor)))+2:3] <- c("pval","pval.adj")
} else {
res <- limma::topTable(fit.eb, number = nrow(count_table), adjust.method = p.adj, coef = coeff)
colnames(res)[4:5] <- c("pval","pval.adj")
res$ordering <- NA
res[!is.na(res$logFC) & res$logFC > 0,"ordering"] <- paste0(levels(as.factor(predictor))[coeff],">",levels(as.factor(predictor))[1])
res[!is.na(res$logFC) & res$logFC < 0,"ordering"] <- paste0(levels(as.factor(predictor))[1],">",levels(as.factor(predictor))[coeff])
}
}
res$Feature <- rownames(res)
res$Method <- "LIMMA voom (vli)"
if(is(data, "phyloseq")) res <- addTax(data, res)
if(allResults) return(fit.eb) else return(res)
} else {
if(!is.null(paired)){
stop("limma, edgeR and statmod packages required")
} else {
stop("limma and edgeR packages required")
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.