#' Welch t-test
#'
#' Apply welch t-test to multiple features with one \code{predictor}, with log transformaiton of counts before normalization
#' @param data Either a matrix with counts/abundances, OR a \code{phyloseq} object. If a matrix/data.frame is provided rows should be taxa/genes/proteins and columns samples
#' @param predictor The predictor of interest. Factor, OR if \code{data} is a \code{phyloseq} object the name of the variable in \code{sample_data(data)} in quotation
#' @param paired For paired/blocked experimental designs. Either a Factor with Subject/Block ID for running paired/blocked analysis, OR if \code{data} is a \code{phyloseq} object the name of the variable in \code{sample_data(data)} in quotation
#' @param relative Logical. Should \code{data} be normalized to relative abundances. Default TRUE
#' @param p.adj Character. P-value adjustment. Default "fdr". See \code{p.adjust} for details
#' @param delta Numeric. Pseudocount for log transformation.
#' @param testStat Function. Function for calculating fold change. Should take two vectors as arguments. Default is a log fold change: \code{log2((mean(case abundances)+0.001)/(mean(control abundances)+0.001))}
#' @param testStat.pair Function. Function for calculating fold change. Should take two vectors as arguments. Default is a log fold change: \code{log2(mean((case abundances+0.001)/(control abundances+0.001)))}
#' @param allResults If TRUE will return raw results from the \code{t.test} function
#' @param ... Additional arguments for the \code{t.test} function
#' @return A data.frame with with results.
#' @examples
#' # Creating random count_table and predictor
#' set.seed(4)
#' mat <- matrix(rnbinom(1000, size = 0.1, mu = 500), nrow = 100, ncol = 10)
#' rownames(mat) <- 1:100
#' pred <- c(rep("Control", 5), rep("Treatment", 5))
#'
#' # Running t-test on each feature
#' res <- DA.ltt(data = mat, predictor = pred)
#' @export
DA.ltt <- function(data, predictor, paired = NULL, relative = TRUE, p.adj = "fdr", delta = 1, testStat = function(case,control){log2((mean(case)+0.001)/(mean(control)+0.001))}, testStat.pair = function(case,control){log2(mean((case+0.001)/(control+0.001)))},allResults = FALSE, ...){
# Extract from phyloseq
if(is(data, "phyloseq")){
DAdata <- DA.phyloseq(data, predictor, paired)
count_table <- DAdata$count_table
predictor <- DAdata$predictor
paired <- DAdata$paired
} else {
count_table <- data
}
# Define function
tt <- function(x){
tryCatch(t.test(x ~ predictor, ...)$p.value, error = function(e){NA})
}
# Order data and define function for paired analysis
if(!is.null(paired)){
count_table <- count_table[,order(paired)]
predictor <- predictor[order(paired)]
testStat <- testStat.pair
tt <- function(x){
tryCatch(t.test(x ~ predictor, paired = TRUE, ...)$p.value, error = function(e){NA})
}
}
# Log and relative abundance
count_table <- log(count_table+delta)
if(relative) count_table <- apply(count_table,2,function(x) x/sum(x))
# Run tests
if(allResults){
if(is.null(paired)){
tt <- function(x){
tryCatch(t.test(x ~ predictor, ...), error = function(e){NA})
}
} else {
tt <- function(x){
tryCatch(t.test(x ~ predictor, paired = TRUE, ...), error = function(e){NA})
}
}
return(apply(count_table,1,tt))
} else {
res <- data.frame(pval = apply(count_table,1,tt))
res$pval.adj <- p.adjust(res$pval, method = p.adj)
# Teststat
predictor.num <- as.numeric(as.factor(predictor))-1
testfun <- function(x){
case <- x[predictor.num==1]
control <- x[predictor.num==0]
testStat(case,control)
}
res$log2FC <- apply(count_table,1,testfun)
res$ordering <- NA
res[!is.na(res$log2FC) & res$log2FC > 0,"ordering"] <- paste0(levels(as.factor(predictor))[2],">",levels(as.factor(predictor))[1])
res[!is.na(res$log2FC) & res$log2FC < 0,"ordering"] <- paste0(levels(as.factor(predictor))[1],">",levels(as.factor(predictor))[2])
res$Feature <- rownames(res)
res$Method <- "Log t-test (ltt)"
if(is(data, "phyloseq")) res <- addTax(data, res)
return(res)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.