R/Train_model_NMF.R

Defines functions add_deconvolution_training_model_NMF

Documented in add_deconvolution_training_model_NMF

#' add_deconvolution_training_model_NMF
#'
#' \code{add_deconvolution_training_model_NMF} adds a new model
#'
#' @param transcriptome_data Transcriptomic data to be
#' used for training. Has to contain the cell subtypes to which the
#' similarity will be calculated. Note that the row names have
#' to contain the HGNC symbols and the column names the sample names.
#' @param model_name Name of the model.
#' @param subtype_vector Character vector containing the subtype
#' labels of the training data samples (\code{transcriptome_data}).
#' @param rank_estimate Rank of the NMF model. Will be set to amount of 
#' different subtypes defined in the subtype_vector if not specified manually.
#' @param exclude_non_interpretable_NMF_components Boolean parameter that 
#' indicates whether trained NMF components that cannot clearly be associated 
#' with either an endocrine or acinar & ductal or hisc subtyp shall be 
#' excluded. Default value FALSE.
#' @param training_nr_marker_genes Amount of genes to be utilized as 
#' marker genes for each cell type. Default value 100.
#' @param parallel_processes Amount of parallel processes used for training. 
#' Warning, RAM utilization increases linearly. Default value 1.
#' @param nrun Amount of times the NMF model will be trained. Default value 10.
#' @import stringr NMF
#' @usage
#' add_deconvolution_training_model_NMF(
#'     transcriptome_data,
#'     model_name,
#'     subtype_vector,
#'     rank_estimate,
#'     exclude_non_interpretable_NMF_components,
#'     training_nr_marker_genes,
#'     parallel_processes,
#'     nrun
#' )
#' @examples
#' data(Lawlor) # Data from Lawlor et al.
#' data(meta_data)
#' 
#' # extract the training sample subtype labels
#' subtype_vector = as.character(meta_data$Subtype) 
#' 
#' add_deconvolution_training_model_NMF(
#'     transcriptome_data = Lawlor,
#'     model_name = "my_model",
#'     subtype_vector = subtype_vector,
#'     rank_estimate = 0,
#'     exclude_non_interpretable_NMF_components = FALSE,
#'     training_nr_marker_genes = 100,
#'     parallel_processes = 1,
#'     nrun = 1
#' )
#' @return Stores a new model in the package directory
#' @import NMF
#' @export
add_deconvolution_training_model_NMF = function(
    transcriptome_data,
    model_name,
    subtype_vector,
    rank_estimate = 0,
    exclude_non_interpretable_NMF_components = FALSE,
    training_nr_marker_genes = 100,
    parallel_processes = 1,
    nrun = 10
){
    canonical_subtypes = c("alpha","beta","gamma","delta","acinar",
                           "ductal","hisc")

    if( model_name == "")
        stop("Require model name, aborting")
    model_path = paste(
        c(system.file("Models/NMF", package="artdeco"),"/",model_name,".RDS"),
        collapse = ""
    )
    
    if (file.exists(model_path)){
        stop(paste0( collapse= "",
            c(
                "Modelname ",
                model_name,
                " already exists, please choose different name or 
                delete existing model")
            )
        )
    }
    
    if (!is.character(subtype_vector)){
        stop(paste0("subtype_vector has to be a character vector"))
    }

    if (length(subtype_vector) == 0)
        stop(paste0("You have to provide the sample subtypes labels for 
                    model training"))
    #subtype_vector = str_to_lower(subtype_vector)

    print("Variance filtering")
    expression_training_mat = variance_filtering(transcriptome_data)

    ### Data cleansing

    row_var = apply(expression_training_mat, FUN = var, MARGIN = 1)
    expression_training_mat = expression_training_mat[row_var != 0,]
    expression_training_mat = expression_training_mat[
        rowSums(expression_training_mat) >= 1,]
    
    ### dif genes
    
    markers <<- c()
    Marker_Gene_List = list()
    for( subtype in unique(subtype_vector) ){
        
        markers_subtype = identify_marker_genes(
            expression_training_mat = expression_training_mat,
            subtype_vector = subtype_vector,
            subtype = subtype,
            training_nr_marker_genes = training_nr_marker_genes
        )
        markers = c(
            markers,
            markers_subtype
        )
        Marker_Gene_List[[subtype]] = markers_subtype
    }
    markers = unique(markers)
    expression_training_mat_reduced = expression_training_mat[markers,]
    print("Finished extracting marker genes for subtypes")

    ### NMF training
    
    if ( rank_estimate == 0 )
        rank_estimate = length(unique(subtype_vector))

    print("Commencing NMF training, this may take some time")
    print(paste("Amount of parallel processes utilized: ", 
                as.character(parallel_processes)), sep =" ")
    
    training_options = paste0('tp',parallel_processes)

    res = nmf(
        expression_training_mat_reduced,
        rank = rank_estimate,
        method = 'brunet',
        .opt = training_options,
        #nrun = nrun,
        maxIter = 100,
        seed = "random"
    )
    
    summary(res, class = subtype_vector)
    
    W=res@fit@W
    colnames(W) = 1:rank_estimate
    
    for (subtype in canonical_subtypes){
        
        marker_genes = as.character(unlist(Marker_Gene_List[subtype]))
        
        for (gene in marker_genes){
        
            max_col_mean_index = as.integer(which.max(W[gene,]))
            if( colnames(W)[max_col_mean_index] %in% canonical_subtypes )
                next()
            
            colnames(W)[max_col_mean_index] = subtype
            print(paste0(collapse="",c(subtype," subtype found as component ",
                                       max_col_mean_index),sep=""))
            break()
        }
    }
    
    if(exclude_non_interpretable_NMF_components){
        
        exclusion_index = which(
            !(str_to_lower(colnames(W)) %in% canonical_subtypes)
        )
        print(paste("Excluding component ",exclusion_index,sep=""))
        W = W[,-1*exclusion_index]
    }
    res@fit@W = W
    
    print("Succesfully finished NMF training")

    print(paste0("Storing model: ", model_path))
    saveRDS(res,model_path)

    print(paste0("Finished training model: ", model_name))
}
RaikOtto/artdeco documentation built on Nov. 3, 2021, 6:18 p.m.