options(repos = BiocManager::repositories())
options(shiny.maxRequestSize=100*1024^2)
if(!require("shiny"))
install.packages("shiny")
if(!require("dplyr"))
install.packages("dplyr")
if(!require("ggplot2"))
install.packages("ggplot2")
if (!require("devtools"))
install.packages("devtools")
if (!require("Seurat"))
devtools::install_github(repo = 'satijalab/seurat', ref = 'release/3.0')
if (!require("Spaniel"))
devtools::install_github(repo = "RachelQueen1/Spaniel")
library(shiny)
library(Seurat)
library(Spaniel)
library(ggplot2)
library(dplyr)
############ ui #################################
ui <- pageWithSidebar(
# App title ----
headerPanel("Spatial Transcriptomics"),
# Sidebar panel for inputs ----
sidebarPanel(
# Input: Select a file ----
fileInput("dataFile", "Upload Data File",
multiple = FALSE,
accept = c(".rds")),
# Title: Upload image file ----
fileInput("imageFile", "Upload Image File",
multiple = FALSE,
accept = c(".rds")),
# Extra options for cluster or gene plots
uiOutput("plotType"),
# Input: for type of plot ----
uiOutput("moreControls"),
p(
#"Side End"
)
),
# Main panel for displaying outputs ----
mainPanel(
#plotOutput("plotPressed"),
tabsetPanel(id = "inTabset",
type = "tabs",
tabPanel("Getting started",
value = "panel1",
h3("Plotting Spatial Data"),
p("1. Upload the data.rds file and image.rds
files. It can take a couple of minutes for
the data to upload"),
p("2. Select the type of plot you want to
look at. There are 4 plots available showing
a) the number of genes detected per spot,
b) the number of reads detected per spot,
c) clustering results,
d) the gene expression of a selected
gene."),
p("3. For the cluster plot you must
also select the cluster resolution you
wish to plot
(generally a lower resolution equates to
fewer clusters."),
p("4. For the gene plot you must select a gene
from the drop downlist. There is a bit of a
delay whilst the gene list is loading.
You can jump to the gene in list by typing the
first few letters of the gene of interest."),
p("5. Click 'Plot' button in the side bar ")
),
tabPanel(title = "View Plots",
value = "panel2",
plotOutput("plotPressed"))
)
)
)
############ Server #################################
# Define server ----
server <- function(input, output, session) {
output$summary <- renderPrint({
"1. Upload the data.rds file and image.rds files.
It can take a couple of minutes for the data to upload"
})
### S4 object
Object <- reactive({
req(input$dataFile)
readRDS(input$dataFile$datapath)
})
### Image object
imageObj <- reactive({
req(input$imageFile)
readRDS(input$imageFile$datapath)
})
## Choose plot type
## if image and seurat objects uploaded
output$plotType <- renderUI({
req(input$dataFile)
req(input$imageFile)
radioButtons("Type_Of_Plot", "Type of plot:",
c("Gene Number Per Spot Plot" = "NoGenes",
"Counts Per Spot Plot" = "CountsPerSpot",
"Cluster Plot" = "Cluster",
"Gene Plot" = "Gene"
))
})
#### Cluster list object TO ADD!!
clusterList <- reactive({
req(Object())
metadata = getMetadata(Object())
colnames(metadata)[grep("cluster_", colnames(metadata))]
})
### Extra options for Gene or Cluster plots
output$moreControls <- renderUI({
if (req(input$Type_Of_Plot) == "Cluster") {
list(selectInput("noClusters", "Select clustering resolution:",
clusterList()),
actionButton("doPlot", "Plot")
)
}
else if (req(input$Type_Of_Plot) == "Gene") {
s = Object()
geneList = rownames(s)
list(selectInput("gene", "Select gene to plot:",
geneList),
actionButton("doPlot", "Plot")
)
}
else {
actionButton("doPlot", "Plot")
}
})
output$plotPressed = renderPlot({
## seurat object
req(input$doPlot)
s = Object()
##create coordinates df
# coordinates = s@meta.data[, c("x", "y")]
# coordinates$spot = rownames(coordinates)
metadata = getMetadata(s)
coordinates = getCoordinates(metadata)
## image grob
g = imageObj()
## plot type
pType = input$Type_Of_Plot
## set features (NULL for all plots except Gene)
f = NULL
if (input$Type_Of_Plot == "Gene"){
f = input$gene
}
## set clusters (NULL for all plots except Cluster)
cl = NULL
if (input$Type_Of_Plot == "Cluster"){
cl = input$noClusters
}
### create plot
spanielPlot(Object = s,
Grob = g,
PlotType = pType,
Gene = f,
ClusterRes = cl,
CustomTitle = NULL,
ScaleData = TRUE)
},
height = 800, width = 800
)
observeEvent(input$doPlot, {
updateTabsetPanel(session, "inTabset",
selected = "panel2"
)
})
}
shinyApp(ui, server)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.