# MotifDb/inst/scripes/import/demo/import.R
#------------------------------------------------------------------------------------------------------------------------
library(RUnit)
options (stringsAsFactors=FALSE)
printf <- function(...) print(noquote(sprintf(...)))
#------------------------------------------------------------------------------------------------------------------------
run = function (dataDir)
{
dataDir <- file.path(dataDir, "jaspar2022")
stopifnot(file.exists(dataDir))
rawMatrixList <- readRawMatrices(dataDir)
checkTrue(length(rawMatrixList) == 1956)
matrices <- extractMatrices(rawMatrixList)
checkTrue(length(matrices) == 1956)
incoming.metadata.file <- file.path(dataDir, "metaData.RData")
checkTrue(file.exists(incoming.metadata.file))
tbl.md <- createMetadataTable(dataDir, matrices, metadata.table = "./metaData.RData")
matrices <- normalizeMatrices(matrices)
matrices <- renameMatrices(matrices, tbl.md)
serializedFile <- file.path(dataDir, "jaspar2022.RData")
printf("writing %s to %s", "jaspar2022.RData", dataDir)
save(matrices, tbl.md, file=serializedFile)
printf("saved %d matrices to %s", length(matrices), serializedFile)
printf("next step: copy %s to <packageRoot>/MotifDb/inst/extdata, rebuild package", serializedFile)
} # run
#------------------------------------------------------------------------------------------------------------------------
readRawMatrices = function (dataDir)
{
# our convention is that there is a shared "dataDir" visible to
# the importer, and that within that directory there is one
# subdirectory for each data source.
# for this example importer, that directory will be <dataDir>/test
# within which we will look for one small file "sample.pcm"
filename <- file.path(dataDir, "JASPAR2022_CORE_non-redundant_pfms_jaspar.txt")
printf("checking for readable matrix file:")
printf(" %s", filename)
stopifnot(file.exists(filename))
all.lines = scan(filename, what=character(0), sep='\n', quiet=TRUE)
title.lines = grep('^>', all.lines)
title.line.count <<- length(title.lines)
max = title.line.count -1
# browser()
# Matt's additions to fix brackets and delimiters
all.lines <- gsub("[A,C,G,T]\\s+\\[\\s*","",all.lines)
all.lines <- gsub("\\s*\\]","",all.lines)
all.lines <- gsub("\\s+","\t",all.lines)
pwms = list()
for (i in 1:max) {
# print(i)
start.line = title.lines [i]
end.line = title.lines [i+1] - 1
new.pwm = parsePwm(all.lines [start.line:end.line])
pwms = c(pwms, list(new.pwm))
} # for i
# Add the last motif, which got missed
start.line <- title.lines[title.line.count]
end.line <- start.line + 4
new.pwm = parsePwm(all.lines [start.line:end.line])
pwms = c(pwms, list(new.pwm))
invisible(pwms)
} # readRawMatrices
#------------------------------------------------------------------------------------------------------------------------
extractMatrices = function (pwm.list)
{
matrices = sapply(pwm.list, function(element) element$matrix)
matrix.names <- sapply(pwm.list, function(element) element$title)
matrix.names <- sub("^>", "", matrix.names)
names(matrices) <- matrix.names
matrices
} # extractMatrices
#------------------------------------------------------------------------------------------------------------------------
createMetadataTable = function(dataDir, matrices, metadata.table)
{
filename <- file.path(dataDir, metadata.table)
printf("checking for readable metadata file:")
printf(" %s", filename)
stopifnot(file.exists(filename))
tbl.mdRaw <- get(load(filename)) # this is "tbl.mdRaw"
tbl.md <- data.frame()
matrix.ids = names(matrices)
for(matrix.id in matrix.ids) {
matrix <- matrices[[matrix.id]]
# Simply subset by the full matrix ID
md <- as.list(subset(tbl.mdRaw, matrix_id == matrix.id))
print(matrix.id)
stopifnot(length(md$matrix_id) == 1)
dataSource <- "jaspar2022"
new.row = list(providerName=matrix.id,
providerId=matrix.id,
dataSource=dataSource,
geneSymbol=md$name,
geneId=NA,
geneIdType=NA,
proteinId=md$uniprot_ids,
proteinIdType=guessProteinIdentifierType(md$uniprot_ids),
organism=md$species,
sequenceCount=max(colSums(matrix)),
bindingSequence=NA_character_,
bindingDomain=NA,
tfFamily=md$family,
experimentType=md$type,
pubmedID= md$pubmed_ids)
tbl.md = rbind(tbl.md, data.frame(new.row, stringsAsFactors=FALSE))
full.name = sprintf('%s-%s-%s-%s',
md$species,
dataSource,
md$name,
matrix.id)
rownames(tbl.md) [nrow(tbl.md)] = full.name
} # for i
invisible(tbl.md)
} # createMetadataTable
#------------------------------------------------------------------------------------------------------------------------
test_createMetadataTable <- function()
{
} # test_createMetadataTable
#------------------------------------------------------------------------------------------------------------------------
renameMatrices = function(matrices, tbl.md)
{
stopifnot(length(matrices) == nrow(tbl.md))
names(matrices) = rownames(tbl.md)
invisible(matrices)
} # renameMatrices
#------------------------------------------------------------------------------------------------------------------------
# an empirical and not altogether trustworthy solution to identifying identifier types.
guessProteinIdentifierType = function(moleculeName)
{
if(is.na(moleculeName))
return(NA_character_)
if(nchar(moleculeName) == 0)
return(NA_character_)
first.char = substr(moleculeName, 1, 1)
if(first.char == 'Y')
return('SGD')
if(first.char %in% c('P', 'Q', 'O', 'A', 'C'))
return('UNIPROT')
if(length(grep('^NP_', moleculeName)) == 1)
return('REFSEQ')
return(NA_character_)
} # guessProteinIdentifierType
#------------------------------------------------------------------------------------------------------------------------
normalizeMatrices = function(matrices)
{
mtx.normalized = sapply(matrices,
function(mtx) apply(mtx, 2, function(colvector) colvector / sum(colvector)))
invisible(mtx.normalized)
} # normalizeMatrices
#------------------------------------------------------------------------------------------------------------------------
parsePwm = function(text)
{
lines = strsplit(text, '\t')
stopifnot(length(lines)==5) # title line, one line for each base
title = lines [[1]][1]
line.count = length(lines)
# expect 4 rows, and a number of columns we can discern from
# the incoming text.
cols <- length(lines[[2]])
result <- matrix(nrow=4, ncol=cols,
dimnames=list(c('A','C','G','T'),
as.character(1:cols)))
row = 1
for(i in 2:line.count){
result [row,] = as.numeric(lines[[i]])
row = row + 1
} # for i
return(list(title=title, matrix=result))
} # parsePwm
#----------------------------------------------------------------------------------------------------
if(!interactive())
run("..")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.