R/mfa-simulate.R

Defines functions mfaSimulate

Documented in mfaSimulate

#' MFA simulation
#'
#' Simulate a bifurcating pseudotime path using the mfa method.
#'
#' @param params MFAParams object containing simulation parameters.
#' @param sparsify logical. Whether to automatically convert assays to sparse
#'        matrices if there will be a size reduction.
#' @param verbose Logical. Whether to print progress messages.
#' @param ... any additional parameter settings to override what is provided in
#'        \code{params}.
#'
#' @details
#' This function is just a wrapper around \code{\link[mfa]{create_synthetic}}
#' that takes a \code{\link{MFAParams}}, runs the simulation then converts the
#' output from log-expression to counts and returns a
#' \code{\link[SingleCellExperiment]{SingleCellExperiment}} object. See
#' \code{\link[mfa]{create_synthetic}} and the mfa paper for more details about
#' how the simulation works.
#'
#' @return SingleCellExperiment containing simulated counts
#'
#' @references
#' Campbell KR, Yau C. Probabilistic modeling of bifurcations in single-cell
#' gene expression data using a Bayesian mixture of factor analyzers. Wellcome
#' Open Research (2017).
#'
#' Paper: \url{10.12688/wellcomeopenres.11087.1}
#'
#' Code: \url{https://github.com/kieranrcampbell/mfa}
#'
#' @examples
#' if (requireNamespace("mfa", quietly = TRUE)) {
#'     sim <- mfaSimulate()
#' }
#' @export
mfaSimulate <- function(params = newMFAParams(), sparsify = TRUE,
                        verbose = TRUE, ...) {
    checkmate::assertClass(params, "MFAParams")
    params <- setParams(params, ...)

    # Set random seed
    seed <- getParam(params, "seed")
    # Get the parameters we are going to use
    nCells <- getParam(params, "nCells")
    nGenes <- getParam(params, "nGenes")
    trans.prop <- getParam(params, "trans.prop")
    zero.neg <- getParam(params, "zero.neg")
    dropout.present <- getParam(params, "dropout.present")
    dropout.lambda <- getParam(params, "dropout.lambda")

    withr::with_seed(seed, {
        if (verbose) {
            message("Simulating counts...")
        }
        mfa.sim <- mfa::create_synthetic(
            C = nCells,
            G = nGenes,
            p_transient = trans.prop,
            zero_negative = zero.neg,
            model_dropout = dropout.present,
            lambda = dropout.lambda
        )

        if (verbose) {
            message("Creating final dataset...")
        }
        cell.names <- paste0("Cell", seq_len(nCells))
        gene.names <- paste0("Gene", seq_len(nGenes))

        exprs <- t(mfa.sim$X)
        rownames(exprs) <- gene.names
        colnames(exprs) <- cell.names

        counts <- 2^exprs - 1
        counts[counts < 0] <- 0
        counts <- round(counts)
    })

    cells <- data.frame(
        Cell = cell.names,
        Branch = mfa.sim$branch,
        Pseudotime = mfa.sim$pst
    )
    rownames(cells) <- cell.names

    features <- data.frame(
        Gene = gene.names,
        KBranch1 = mfa.sim$k[, 1],
        KBranch2 = mfa.sim$k[, 2],
        PhiBranch1 = mfa.sim$phi[, 1],
        PhiBranch2 = mfa.sim$phi[, 2],
        DeltaBranch1 = mfa.sim$delta[, 1],
        DeltaBranch2 = mfa.sim$delta[, 2]
    )
    rownames(features) <- gene.names

    sim <- SingleCellExperiment(
        assays = list(
            counts = counts,
            LogExprs = exprs
        ),
        rowData = features,
        colData = cells,
        metadata = list(Params = params)
    )

    if (sparsify) {
        if (verbose) {
            message("Sparsifying assays...")
        }
        assays(sim) <- sparsifyMatrices(
            assays(sim),
            auto = TRUE,
            verbose = verbose
        )
    }

    return(sim)
}
Oshlack/splatter documentation built on Dec. 10, 2024, 3:48 p.m.