This is an example workflow for processing a pooled screening eperiment using the provided sample data. See the various manpages for additional visualization options and algorithmic details.
Note that what follows describes a very basic analysis. If you are considering integrating the results of many different screen contrasts or even different experiments and/or technologies, refer to the Advanced Screen Analysis: Contrast Comparisons
vignette.
Load dependencies and data
suppressPackageStartupMessages(library(Biobase)) suppressPackageStartupMessages(library(limma)) suppressPackageStartupMessages(library(gCrisprTools)) data("es", package = "gCrisprTools") data("ann", package = "gCrisprTools") data("aln", package = "gCrisprTools") knitr::opts_chunk$set(message = FALSE, fig.width = 8, fig.height = 8, warning = FALSE)
Make a sample key, structured as a factor with control samples in the first level
sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference") names(sk) <- row.names(pData(es))
Generate a contrast of interest using voom/limma; pairing replicates is a good idea if that information is available.
design <- model.matrix(~ 0 + REPLICATE_POOL + TREATMENT_NAME, pData(es)) colnames(design) <- gsub('TREATMENT_NAME', '', colnames(design)) contrasts <-makeContrasts(DeathExpansion - ControlExpansion, levels = design)
Optionally, trim of trace reads from the unnormalized object (see man page for details)
es <- ct.filterReads(es, trim = 1000, sampleKey = sk)
Normalize, convert to a voom object, and generate a contrast
es <- ct.normalizeGuides(es, method = "scale", plot.it = TRUE) #See man page for other options vm <- voom(exprs(es), design) fit <- lmFit(vm, design) fit <- contrasts.fit(fit, contrasts) fit <- eBayes(fit)
Edit the annotation file if you used ct.filterReads
above
ann <- ct.prepareAnnotation(ann, fit, controls = "NoTarget")
Summarize gRNA signals to identify target genes of interest
resultsDF <- ct.generateResults( fit, annotation = ann, RRAalphaCutoff = 0.1, permutations = 1000, scoring = "combined", permutation.seed = 2 )
In some cases, reagents might target multiple known elements (e.g., gRNAs in a CRISPRi library that target multiple promoters of the same gene). In such cases, you can specify this via the alt.annotation
argument to ct.generateResults()
. Alternative annotations are supplied as a list of character vectors named for the reagents.
# Create random alternative target associations altann <- sapply(ann$ID, function(x){ out <- as.character(ann$geneSymbol)[ann$ID %in% x] if(runif(1) < 0.01){out <- c(out, sample(as.character(ann$geneSymbol), size = 1))} return(out) }, simplify = FALSE) resultsDF <- ct.generateResults( fit, annotation = ann, RRAalphaCutoff = 0.1, permutations = 1000, scoring = "combined", alt.annotation = altann, permutation.seed = 2 )
Optionally, just load an example results object for testing purposes (trimming out reads as necessary)
data("fit", package = "gCrisprTools") data("resultsDF", package = "gCrisprTools") fit <- fit[(row.names(fit) %in% row.names(ann)),] resultsDF <- resultsDF[(row.names(resultsDF) %in% row.names(ann)),] targetResultDF <- ct.simpleResult(resultsDF) #For a simpler target-level result object
gCrisprTools contains a variety of pooled screen-specific quality control and visualization tools (see man pages for details):
ct.alignmentChart(aln, sk) ct.rawCountDensities(es, sk)
Visualize gRNA abundance distributions
ct.gRNARankByReplicate(es, sk) ct.gRNARankByReplicate(es, sk, annotation = ann, geneSymb = "NoTarget") #Show locations of NTC gRNAs
Visualize control guide behavior across conditions
ct.viewControls(es, ann, sk, normalize = FALSE) ct.viewControls(es, ann, sk, normalize = TRUE)
Visualize GC bias across samples, or within an experimental contrast
ct.GCbias(es, ann, sk) ct.GCbias(fit, ann, sk)
View most variable gRNAs/Genes (as % of sequencing library)
ct.stackGuides(es, sk, plotType = "gRNA", annotation = ann, nguides = 40)
ct.stackGuides(es, sk, plotType = "Target", annotation = ann)
ct.stackGuides(es, sk, plotType = "Target", annotation = ann, subset = names(sk)[grep('Expansion', sk)])
View a CDF of genes/guides
ct.guideCDF(es, sk, plotType = "gRNA") ct.guideCDF(es, sk, plotType = "Target", annotation = ann)
View the overall enrichment and depletion trends identified in the screen:
ct.contrastBarchart(resultsDF)
View top enriched/depleted candidates
ct.topTargets(fit, resultsDF, ann, targets = 10, enrich = TRUE) ct.topTargets(fit, resultsDF, ann, targets = 10, enrich = FALSE)
View the behavior of reagents targeting a particular gene of interest
ct.viewGuides("Target1633", fit, ann) ct.gRNARankByReplicate(es, sk, annotation = ann, geneSymb = "Target1633")
Observe the effects detected for sets of targets within a screen contrast
ct.signalSummary(resultsDF, targets = list('TargetSetA' = c(sample(unique(resultsDF$geneSymbol), 3)), 'TargetSetB' = c(sample(unique(resultsDF$geneSymbol), 2))))
You could test a known gene set for enrichment within target candidates:
data("essential.genes", package = "gCrisprTools") ct.targetSetEnrichment(resultsDF, essential.genes)
Or optionally add a visualization:
ROC <- ct.ROC(resultsDF, essential.genes, direction = "deplete") PRC <- ct.PRC(resultsDF, essential.genes, direction = "deplete") show(ROC) # show(PRC) is equivalent for the PRC analysis
Or alternatively you could test for ontological enrichment within the depleted/enriched targets via the sparrow
package:
#Create a geneset database using one of the many helper functions genesetdb <- sparrow::getMSigGeneSetDb(collection = 'h', species = 'human', id.type = 'entrez') ct.seas(resultsDF, gdb = genesetdb) # If you have a library that targets elements unevenly (e.g., variable numbers of # elements/promoters per genes), you can conform it via `sparrow::convertIdentifiers()` genesetdb.GREAT <- sparrow::convertIdentifiers(genesetdb, from = 'geneID', to = 'geneSymbol', xref = ann) ct.seas(resultsDF, gdb = genesetdb.GREAT)
See the Contrast_Comparisons
vignette for more advanced use cases of gCrisprTools and extension to complex experiments and study designs.
Finally, you can make reports in a directory of interest:
path2report <- #Make a report of the whole experiment ct.makeReport(fit = fit, eset = es, sampleKey = sk, annotation = ann, results = resultsDF, aln = aln, outdir = ".") path2QC <- #Or one focusing only on experiment QC ct.makeQCReport(es, trim = 1000, log2.ratio = 0.05, sampleKey = sk, annotation = ann, aln = aln, identifier = 'Crispr_QC_Report', lib.size = NULL ) path2Contrast <- #Or Contrast-specific one ct.makeContrastReport(eset = es, fit = fit, sampleKey = sk, results = resultsDF, annotation = ann, comparison.id = NULL, identifier = 'Crispr_Contrast_Report')
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.