# This R scripts helps us generate data("SeuratBC", package = "stJoincount")
# User needs to directory containing the "filtered_feature_bc_matrix.h5"(HDF5), and three subdirectory "spatial"(Sptial imaging data) , "analysis"(Clustering analysis), and "filtered_feature_bc_matrix"(barcode matrix(filtered)).
# These data can be found:https://www.10xgenomics.com/resources/datasets/human-breast-cancer-block-a-section-1-1-standard-1-1-0
# necessary R-packages
# install.packages("Seurat")
library(Seurat)
spatialDataPrep <- function(filename){
inputSample <- Load10X_Spatial(filename)
sampleMeta <- read.csv(paste(filename, "/analysis/clustering/graphclust/clusters.csv", sep = ""), sep = ',')
if (colnames(sampleMeta)[1] == "barcode"){
colnames(sampleMeta)[colnames(sampleMeta) == "barcode"] <- "Barcode"
colnames(sampleMeta)[colnames(sampleMeta) == "cluster"] <- "Cluster"
}
rownames(sampleMeta) <- sampleMeta$Barcode
sampleCluster <- AddMetaData(object = inputSample, metadata = sampleMeta)
Idents(sampleCluster) <- "Cluster"
return(sampleCluster)
}
# folder pathway that contains feature-bc-matrix, analysis and spatial information as previous described
humanBC <- spatialDataPrep("~/human_breast_cancer")
# Following steps used for sliming data to meet the size requirement of bioconductor packages
slim.BC <- DietSeurat(
humanBC,
counts = FALSE,
data = TRUE,
scale.data = FALSE,
features = NULL,
assays = NULL,
dimreducs = NULL,
graphs = NULL
)
idx <- sample(ncol(slim.BC),20)
seuratBC <- slim.BC[, idx]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.