#' Process MS data: clean, normalize and summarize before differential analysis
#'
#' @param raw name of the raw (input) data set.
#' @param logTrans base of logarithm transformation: 2 (default) or 10.
#' @param normalization normalization to remove systematic bias between MS runs.
#' There are three different normalizations supported:
#' 'equalizeMedians' (default) represents constant normalization (equalizing the medians)
#' based on reference signals is performed.
#' 'quantile' represents quantile normalization based on reference signals
#' 'globalStandards' represents normalization with global standards proteins.
#' If FALSE, no normalization is performed.
#' @param nameStandards optional vector of global standard peptide names.
#' Required only for normalization with global standard peptides.
#' @param featureSubset "all" (default) uses all features that the data set has.
#' "top3" uses top 3 features which have highest average of log-intensity across runs.
#' "topN" uses top N features which has highest average of log-intensity across runs.
#' It needs the input for n_top_feature option.
#' "highQuality" flags uninformative feature and outliers.
#' @param remove_uninformative_feature_outlier optional. Only required if
#' featureSubset = "highQuality". TRUE allows to remove
#' 1) noisy features (flagged in the column feature_quality with "Uninformative"),
#' 2) outliers (flagged in the column, is_outlier with TRUE,
#' before run-level summarization. FALSE (default) uses all features and intensities
#' for run-level summarization.
#' @param min_feature_count optional. Only required if featureSubset = "highQuality".
#' Defines a minimum number of informative features a protein needs to be considered
#' in the feature selection algorithm.
#' @param n_top_feature optional. Only required if featureSubset = 'topN'.
#' It that case, it specifies number of top features that will be used.
#' Default is 3, which means to use top 3 features.
#' @param summaryMethod "TMP" (default) means Tukey's median polish,
#' which is robust estimation method. "linear" uses linear mixed model.
#' @param equalFeatureVar only for summaryMethod = "linear". default is TRUE.
#' Logical variable for whether the model should account for heterogeneous variation
#' among intensities from different features. Default is TRUE, which assume equal
#' variance among intensities from features. FALSE means that we cannot assume equal
#' variance among intensities from features, then we will account for heterogeneous
#' variation from different features.
#' @param censoredInt Missing values are censored or at random.
#' 'NA' (default) assumes that all 'NA's in 'Intensity' column are censored.
#' '0' uses zero intensities as censored intensity.
#' In this case, NA intensities are missing at random.
#' The output from Skyline should use '0'.
#' Null assumes that all NA intensites are randomly missing.
#' @param MBimpute only for summaryMethod = "TMP" and censoredInt = 'NA' or '0'.
#' TRUE (default) imputes 'NA' or '0' (depending on censoredInt option)
#' by Accelated failure model. FALSE uses the values assigned by cutoffCensored.
#' @param remove50missing only for summaryMethod = "TMP". TRUE removes the proteins
#' where every run has at least 50\% missing values for each peptide. FALSE is default.
#' @param maxQuantileforCensored Maximum quantile for deciding censored missing values, default is 0.999
#' @param fix_missing Optional, same as the `fix_missing` parameter in MSstatsConvert::MSstatsBalancedDesign function
#' @param numberOfCores Number of cores for parallel processing. When > 1,
#' a logfile named `MSstats_dataProcess_log_progress.log` is created to
#' track progress. Only works for Linux & Mac OS. Default is 1.
#' @inheritParams .documentFunction
#'
#' @importFrom utils sessionInfo
#' @importFrom data.table as.data.table
#'
#' @return A list containing:
#' \describe{
#' \item{FeatureLevelData}{A data frame with feature-level information after processing. Columns include:
#' \describe{
#' \item{PROTEIN}{Identifier for the protein associated with the feature.}
#' \item{PEPTIDE}{Identifier for the peptide sequence.}
#' \item{TRANSITION}{Identifier for the transition, typically representing a specific ion pair.}
#' \item{FEATURE}{Unique identifier for the feature, which could be a combination of peptide and transition.}
#' \item{LABEL}{Specifies the isotopic labeling of peptides, notably for SRM-based experiments. "L" indicates light-labeled peptides while "H" denotes heavy-labeled peptides.}
#' \item{GROUP}{Experimental group identifier.}
#' \item{RUN}{Identifier for the specific MS run.}
#' \item{SUBJECT}{Subject identifier within the experimental group.}
#' \item{FRACTION}{Fraction identifier if fractionation was performed.}
#' \item{originalRUN}{Original run identifier before any processing.}
#' \item{censored}{Logical indicator of whether the intensity value is considered missing or below limit of detection.}
#' \item{INTENSITY}{Original intensity measurement of the feature in the given run.}
#' \item{ABUNDANCE}{Processed abundance or intensity value after log-transformation and normalization.}
#' \item{newABUNDANCE}{The ABUNDANCE column but includes imputed missing values. It is the column that is used for protein summarization.}
#' \item{predicted}{Predicted intensity values for censored data, typically derived from a statistical model.}
#' }
#' }
#' \item{ProteinLevelData}{A data frame with run-level summarized information for each protein. Columns include:
#' \describe{
#' \item{RUN}{Identifier for the specific MS run.}
#' \item{Protein}{Identifier for the protein.}
#' \item{LogIntensities}{Log-transformed intensities for the protein in each run.}
#' \item{originalRUN}{Original run identifier before any processing.}
#' \item{GROUP}{Experimental group identifier.}
#' \item{SUBJECT}{Subject identifier within the experimental group.}
#' \item{TotalGroupMeasurements}{Total number of feature measurements for the protein in the given group.}
#' \item{NumMeasuredFeatures}{Number of features measured for the protein in the given run.}
#' \item{MissingPercentage}{Percentage of missing feature values for the protein in the given run.}
#' \item{more50missing}{Logical indicator of whether more than 50 percent of the features values are missing for the protein in the given run.}
#' \item{NumImputedFeature}{Number of features for which values were imputed due to missing or censored data for the protein in the given run.}
#' }
#' }
#' }
#'
#' @export
#'
#' @examples
#' # Consider a raw data (i.e. SRMRawData) for a label-based SRM experiment from a yeast study
#' # with ten time points (T1-T10) of interests and three biological replicates.
#' # It is a time course experiment. The goal is to detect protein abundance changes
#' # across time points.
#' head(SRMRawData)
#' # Log2 transformation and normalization are applied (default)
#' QuantData<-dataProcess(SRMRawData, use_log_file = FALSE)
#' head(QuantData$FeatureLevelData)
#' # Log10 transformation and normalization are applied
#' QuantData1<-dataProcess(SRMRawData, logTrans=10, use_log_file = FALSE)
#' head(QuantData1$FeatureLevelData)
#' # Log2 transformation and no normalization are applied
#' QuantData2<-dataProcess(SRMRawData,normalization=FALSE, use_log_file = FALSE)
#' head(QuantData2$FeatureLevelData)
#'
dataProcess = function(
raw, logTrans = 2, normalization = "equalizeMedians", nameStandards = NULL,
featureSubset = "all", remove_uninformative_feature_outlier = FALSE,
min_feature_count = 2, n_top_feature = 3, summaryMethod = "TMP",
equalFeatureVar = TRUE, censoredInt = "NA", MBimpute = TRUE,
remove50missing = FALSE, fix_missing = NULL, maxQuantileforCensored = 0.999,
use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL,
numberOfCores = 1
) {
MSstatsConvert::MSstatsLogsSettings(use_log_file, append, verbose,
log_file_path,
base = "MSstats_dataProcess_log_")
getOption("MSstatsLog")("INFO", "MSstats - dataProcess function")
.checkDataProcessParams(
logTrans, normalization, nameStandards,
list(method = featureSubset, n_top = n_top_feature,
remove_uninformative = remove_uninformative_feature_outlier),
list(method = summaryMethod, equal_var = equalFeatureVar),
list(symbol = censoredInt, MB = MBimpute))
peptides_dict = makePeptidesDictionary(as.data.table(unclass(raw)), normalization)
input = MSstatsPrepareForDataProcess(raw, logTrans, fix_missing)
input = MSstatsNormalize(input, normalization, peptides_dict, nameStandards)
input = MSstatsMergeFractions(input)
input = MSstatsHandleMissing(input, summaryMethod, MBimpute,
censoredInt, maxQuantileforCensored)
input = MSstatsSelectFeatures(input, featureSubset, n_top_feature,
min_feature_count)
.logDatasetInformation(input)
getOption("MSstatsLog")("INFO",
"== Start the summarization per subplot...")
getOption("MSstatsMsg")("INFO",
" == Start the summarization per subplot...")
processed = getProcessed(input)
input = MSstatsPrepareForSummarization(input, summaryMethod, MBimpute, censoredInt,
remove_uninformative_feature_outlier)
summarized = tryCatch(MSstatsSummarizeWithMultipleCores(input, summaryMethod,
MBimpute, censoredInt,
remove50missing, equalFeatureVar,
numberOfCores),
error = function(e) {
print(e)
NULL
})
getOption("MSstatsLog")("INFO",
"== Summarization is done.")
getOption("MSstatsMsg")("INFO",
" == Summarization is done.")
output = MSstatsSummarizationOutput(input, summarized, processed,
summaryMethod, MBimpute, censoredInt)
output
}
#' Feature-level data summarization with multiple cores
#'
#' @param input feature-level data processed by dataProcess subfunctions
#' @param method summarization method: "linear" or "TMP"
#' @param equal_variance only for summaryMethod = "linear". Default is TRUE.
#' Logical variable for whether the model should account for heterogeneous variation
#' among intensities from different features. Default is TRUE, which assume equal
#' variance among intensities from features. FALSE means that we cannot assume
#' equal variance among intensities from features, then we will account for
#' heterogeneous variation from different features.
#' @param censored_symbol Missing values are censored or at random.
#' 'NA' (default) assumes that all 'NA's in 'Intensity' column are censored.
#' '0' uses zero intensities as censored intensity.
#' In this case, NA intensities are missing at random.
#' The output from Skyline should use '0'.
#' Null assumes that all NA intensites are randomly missing.
#' @param remove50missing only for summaryMethod = "TMP". TRUE removes the proteins
#' where every run has at least 50\% missing values for each peptide. FALSE is default.
#' @param impute only for summaryMethod = "TMP" and censoredInt = 'NA' or '0'.
#' TRUE (default) imputes 'NA' or '0' (depending on censoredInt option) by Accelated failure model.
#' FALSE uses the values assigned by cutoffCensored
#' @param numberOfCores Number of cores for parallel processing. When > 1,
#' a logfile named `MSstats_dataProcess_log_progress.log` is created to
#' track progress. Only works for Linux & Mac OS. Default is 1.
#'
#' @importFrom parallel makeCluster parLapply stopCluster clusterExport
#'
#' @return list of length one with run-level data.
#'
MSstatsSummarizeWithMultipleCores = function(input, method, impute, censored_symbol,
remove50missing, equal_variance, numberOfCores = 1) {
if (numberOfCores > 1) {
protein_indices = split(seq_len(nrow(input)), list(input$PROTEIN))
num_proteins = length(protein_indices)
function_environment = environment()
cl = parallel::makeCluster(numberOfCores)
getOption("MSstatsLog")("INFO",
"Starting the cluster setup for summarization")
parallel::clusterExport(cl, c("MSstatsSummarizeSingleTMP",
"MSstatsSummarizeSingleLinear",
"input", "impute", "censored_symbol",
"remove50missing", "protein_indices",
"equal_variance"),
envir = function_environment)
cat(paste0("Number of proteins to process: ", num_proteins),
sep = "\n", file = "MSstats_dataProcess_log_progress.log")
if (method == "TMP") {
summarized_results = parallel::parLapply(cl, seq_len(num_proteins), function(i) {
if (i %% 100 == 0) {
cat("Finished processing an additional 100 proteins",
sep = "\n", file = "MSstats_dataProcess_log_progress.log", append = TRUE)
}
single_protein = input[protein_indices[[i]],]
MSstatsSummarizeSingleTMP(
single_protein, impute, censored_symbol, remove50missing)
})
} else {
summarized_results = parallel::parLapply(cl, seq_len(num_proteins), function(i) {
if (i %% 100 == 0) {
cat("Finished processing an additional 100 proteins",
sep = "\n", file = "MSstats_dataProcess_log_progress.log", append = TRUE)
}
single_protein = input[protein_indices[[i]],]
MSstatsSummarizeSingleLinear(single_protein, equal_variance)
})
}
parallel::stopCluster(cl)
return(summarized_results)
} else {
return(MSstatsSummarizeWithSingleCore(input, method, impute, censored_symbol,
remove50missing, equal_variance))
}
}
#' Feature-level data summarization with 1 core
#'
#' @inheritParams MSstatsSummarizeWithMultipleCores
#'
#' @importFrom data.table uniqueN
#' @importFrom utils setTxtProgressBar
#'
#' @return list of length one with run-level data.
#'
#' @export
#'
#' @examples
#' raw = DDARawData
#' method = "TMP"
#' cens = "NA"
#' impute = TRUE
#' MSstatsConvert::MSstatsLogsSettings(FALSE)
#' input = MSstatsPrepareForDataProcess(raw, 2, NULL)
#' input = MSstatsNormalize(input, "EQUALIZEMEDIANS")
#' input = MSstatsMergeFractions(input)
#' input = MSstatsHandleMissing(input, "TMP", TRUE, "NA", 0.999)
#' input = MSstatsSelectFeatures(input, "all")
#' processed = getProcessed(input)
#' input = MSstatsPrepareForSummarization(input, method, impute, cens, FALSE)
#' summarized = MSstatsSummarizeWithSingleCore(input, method, impute, cens, FALSE, TRUE)
#' length(summarized) # list of summarization outputs for each protein
#' head(summarized[[1]][[1]]) # run-level summary
#'
MSstatsSummarizeWithSingleCore = function(input, method, impute, censored_symbol,
remove50missing, equal_variance) {
protein_indices = split(seq_len(nrow(input)), list(input$PROTEIN))
num_proteins = length(protein_indices)
summarized_results = vector("list", num_proteins)
if (method == "TMP") {
pb = utils::txtProgressBar(min = 0, max = num_proteins, style = 3)
for (protein_id in seq_len(num_proteins)) {
single_protein = input[protein_indices[[protein_id]],]
summarized_results[[protein_id]] = MSstatsSummarizeSingleTMP(
single_protein, impute, censored_symbol, remove50missing)
setTxtProgressBar(pb, protein_id)
}
close(pb)
} else {
pb = utils::txtProgressBar(min = 0, max = num_proteins, style = 3)
for (protein_id in seq_len(num_proteins)) {
single_protein = input[protein_indices[[protein_id]],]
summarized_result = MSstatsSummarizeSingleLinear(single_protein,
equal_variance)
summarized_results[[protein_id]] = summarized_result
setTxtProgressBar(pb, protein_id)
}
close(pb)
}
summarized_results
}
#' Feature-level data summarization
#'
#' @param proteins_list list of processed feature-level data
#' @inheritParams MSstatsSummarizeWithMultipleCores
#'
#' @importFrom data.table uniqueN
#' @importFrom utils setTxtProgressBar
#'
#' @return list of length one with run-level data.
#'
#' @export
#'
#' @examples
#' raw = DDARawData
#' method = "TMP"
#' cens = "NA"
#' impute = TRUE
#' MSstatsConvert::MSstatsLogsSettings(FALSE)
#' input = MSstatsPrepareForDataProcess(raw, 2, NULL)
#' input = MSstatsNormalize(input, "EQUALIZEMEDIANS")
#' input = MSstatsMergeFractions(input)
#' input = MSstatsHandleMissing(input, "TMP", TRUE, "NA", 0.999)
#' input = MSstatsSelectFeatures(input, "all")
#' processed = getProcessed(input)
#' input = MSstatsPrepareForSummarization(input, method, impute, cens, FALSE)
#' input_split = split(input, input$PROTEIN)
#' summarized = MSstatsSummarize(input_split, method, impute, cens, FALSE, TRUE)
#' length(summarized) # list of summarization outputs for each protein
#' head(summarized[[1]][[1]]) # run-level summary
#'
MSstatsSummarize = function(proteins_list, method, impute, censored_symbol,
remove50missing, equal_variance) {
num_proteins = length(proteins_list)
summarized_results = vector("list", num_proteins)
if (method == "TMP") {
pb = utils::txtProgressBar(min = 0, max = num_proteins, style = 3)
for (protein_id in seq_len(num_proteins)) {
single_protein = proteins_list[[protein_id]]
summarized_results[[protein_id]] = MSstatsSummarizeSingleTMP(
single_protein, impute, censored_symbol, remove50missing)
setTxtProgressBar(pb, protein_id)
}
close(pb)
} else {
pb = utils::txtProgressBar(min = 0, max = num_proteins, style = 3)
for (protein_id in seq_len(num_proteins)) {
single_protein = proteins_list[[protein_id]]
summarized_result = MSstatsSummarizeSingleLinear(single_protein,
equal_variance)
summarized_results[[protein_id]] = summarized_result
setTxtProgressBar(pb, protein_id)
}
close(pb)
}
msg_deprecation = paste("FUNCTION DEPRECATION NOTICE: We would like to",
"notify you that the MSstatsSummarize function",
"will undergo a transition process. Starting from release 3.21",
"the MSstatsSummarize function in MSstats will be deprecated",
"in favor of MSstatsSummarizeWithSingleCore.",
"Please take the necessary steps to update your codebase",
"and migrate to MSstatsSummarizeWithSingleCore before",
"release 3.21 to avoid any disruptions to your workflow.")
message(msg_deprecation)
summarized_results
}
#' Linear model-based summarization for a single protein
#'
#' @param single_protein feature-level data for a single protein
#' @param equal_variances if TRUE, observation are assumed to be homoskedastic
#'
#' @return list with protein-level data
#'
#' @importFrom stats xtabs
#'
#' @export
#'
#' @examples
#' raw = DDARawData
#' method = "linear"
#' cens = NULL
#' impute = FALSE
#' # currently, MSstats only supports MBimpute = FALSE for linear summarization
#' MSstatsConvert::MSstatsLogsSettings(FALSE)
#' input = MSstatsPrepareForDataProcess(raw, 2, NULL)
#' input = MSstatsNormalize(input, "EQUALIZEMEDIANS")
#' input = MSstatsMergeFractions(input)
#' input = MSstatsHandleMissing(input, "TMP", TRUE, "NA", 0.999)
#' input = MSstatsSelectFeatures(input, "all")
#' input = MSstatsPrepareForSummarization(input, method, impute, cens, FALSE)
#' input_split = split(input, input$PROTEIN)
#' single_protein_summary = MSstatsSummarizeSingleLinear(input_split[[1]])
#' head(single_protein_summary[[1]])
#'
MSstatsSummarizeSingleLinear = function(single_protein, equal_variances = TRUE) {
ABUNDANCE = RUN = FEATURE = PROTEIN = LogIntensities = NULL
label = data.table::uniqueN(single_protein$LABEL) > 1
single_protein = single_protein[!is.na(ABUNDANCE)]
single_protein[, RUN := factor(RUN)]
single_protein[, FEATURE := factor(FEATURE)]
counts = xtabs(~ RUN + FEATURE,
data = unique(single_protein[, list(FEATURE, RUN)]))
counts = as.matrix(counts)
is_single_feature = .checkSingleFeature(single_protein)
fit = try(.fitLinearModel(single_protein, is_single_feature, is_labeled = label,
equal_variances), silent = TRUE)
if (inherits(fit, "try-error")) {
msg = paste("*** error : can't fit the model for ", unique(single_protein$PROTEIN))
getOption("MSstatsLog")("WARN", msg)
getOption("MSstatsMsg")("WARN", msg)
result = NULL
} else {
cf = summary(fit)$coefficients[, 1]
result = unique(single_protein[, list(Protein = PROTEIN, RUN = RUN)])
log_intensities = get_linear_summary(single_protein, cf,
counts, label)
result[, LogIntensities := log_intensities]
}
list(result)
}
#' Tukey Median Polish summarization for a single protein
#'
#' @param single_protein feature-level data for a single protein
#' @inheritParams MSstatsSummarize
#'
#' @return list of two data.tables: one with fitted survival model,
#' the other with protein-level data
#'
#' @importFrom stats predict
#'
#' @export
#'
#' @examples
#' raw = DDARawData
#' method = "TMP"
#' cens = "NA"
#' impute = TRUE
#' # currently, MSstats only supports MBimpute = FALSE for linear summarization
#' MSstatsConvert::MSstatsLogsSettings(FALSE)
#' input = MSstatsPrepareForDataProcess(raw, 2, NULL)
#' input = MSstatsNormalize(input, "EQUALIZEMEDIANS")
#' input = MSstatsMergeFractions(input)
#' input = MSstatsHandleMissing(input, "TMP", TRUE, "NA", 0.999)
#' input = MSstatsSelectFeatures(input, "all")
#' input = MSstatsPrepareForSummarization(input, method, impute, cens, FALSE)
#' input_split = split(input, input$PROTEIN)
#' single_protein_summary = MSstatsSummarizeSingleTMP(input_split[[1]],
#' impute, cens, FALSE)
#' head(single_protein_summary[[1]])
#'
MSstatsSummarizeSingleTMP = function(single_protein, impute, censored_symbol,
remove50missing) {
newABUNDANCE = n_obs = n_obs_run = RUN = FEATURE = LABEL = NULL
predicted = censored = NULL
cols = intersect(colnames(single_protein), c("newABUNDANCE", "cen", "RUN",
"FEATURE", "ref"))
single_protein = single_protein[(n_obs > 1 & !is.na(n_obs)) &
(n_obs_run > 0 & !is.na(n_obs_run))]
if (nrow(single_protein) == 0) {
return(list(NULL, NULL))
}
single_protein[, RUN := factor(RUN)]
single_protein[, FEATURE := factor(FEATURE)]
if (impute & any(single_protein[["censored"]])) {
survival_fit = .fitSurvival(single_protein[LABEL == "L", cols,
with = FALSE])
single_protein[, predicted := predict(survival_fit,
newdata = .SD)]
single_protein[, predicted := ifelse(censored & (LABEL == "L"), predicted, NA)]
single_protein[, newABUNDANCE := ifelse(censored & LABEL == "L",
predicted, newABUNDANCE)]
survival = single_protein[, c(cols, "predicted"), with = FALSE]
} else {
survival = single_protein[, cols, with = FALSE]
survival[, predicted := NA]
}
single_protein = .isSummarizable(single_protein, remove50missing)
if (is.null(single_protein)) {
return(list(NULL, NULL))
} else {
single_protein = single_protein[!is.na(newABUNDANCE), ]
is_labeled = nlevels(single_protein$LABEL) > 1
result = .runTukey(single_protein, is_labeled, censored_symbol,
remove50missing)
}
list(result, survival)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.