R/findNhoodMarkers.R

Defines functions findNhoodMarkers

Documented in findNhoodMarkers

#' Identify post-hoc neighbourhood marker genes
#'
#' This function will perform differential gene expression analysis on
#' differentially abundant neighbourhoods, by first aggregating adjacent and
#' concordantly DA neighbourhoods, then comparing cells \emph{between} these
#' aggregated groups. For differential gene experession based on an input design
#' \emph{within} DA neighbourhoods see \code{\link{testDiffExp}}.
#'
#' @param x A \code{\linkS4class{Milo}} object containing single-cell gene expression
#' and neighbourhoods.
#' @param da.res A \code{data.frame} containing DA results, as expected from running
#' \code{testNhoods}.
#' @param da.fdr A numeric scalar that determines at what FDR neighbourhoods are declared
#' DA for the purposes of aggregating across concorantly DA neighbourhoods.
#' @param assay A character scalar determining which \code{assays} slot to extract from the
#' \code{\linkS4class{Milo}} object to use for DGE testing.
#' @param aggregate.samples logical indicating wheather the expression values for cells in the same sample
#' and neighbourhood group should be merged for DGE testing. This allows to perform testing exploiting the replication structure
#' in the experimental design, rather than treating single-cells as independent replicates. The function used for aggregation depends on the
#' selected gene expression assay: if \code{assay="counts"} the expression values are summed, otherwise we take the mean.
#' @param sample_col a character scalar indicating the column in the colData storing sample information
#' (only relevant if \code{aggregate.samples==TRUE})
#' @param overlap A scalar integer that determines the number of cells that must
#' overlap between adjacent neighbourhoods for merging.
#' @param lfc.threshold A scalar that determines the absolute log fold change above
#' which neighbourhoods should be considerd 'DA' for merging. Default=NULL
#' @param merge.discord A logical scalar that overrides the default behaviour and allows
#' adjacent neighbourhoods to be merged if they have discordant log fold change signs. Using
#' this argument is generally discouraged, but may be useful for constructing an empirical null
#' group of cells, regardless of DA sign.
#' @param subset.row A logical, integer or character vector indicating the rows
#' of \code{x} to use for sumamrizing over cells in neighbourhoods.
#' @param gene.offset A logical scalar the determines whether a per-cell offset
#' is provided in the DGE GLM to adjust for the number of detected genes with
#' expression > 0.
#' @param return.groups A logical scalar that returns a \code{\link{data.frame}} of the
#' aggregated groups per single-cell. Cells that are members of non-DA neighbourhoods contain
#' \code{NA} values.
#' @param subset.nhoods A logical, integer or character vector indicating which neighbourhoods
#' to subset before aggregation and DGE testing.
#' @param na.function A valid NA action function to apply, should be one of
#' \code{na.fail, na.omit, na.exclude, na.pass}.
#' @param compute.new A logical scalar indicating whether to force computing a new neighbourhood
#' adjacency matrix if already present.
#'
#' @details
#' Louvain clustering is applied to the neighbourhood graph. This graph is first modified
#' based on two criteria: 1) neighbourhoods share at least \code{overlap} number of cells,
#' and 2) the DA log fold change sign is concordant.
#' This behaviour can be modulated by setting \code{overlap} to be more or less stringent.
#' Additionally, a threshold on the log fold-changes can be set, such that \code{lfc.threshold}
#' is required to retain edges between adjacent neighbourhoods. Note: adjacent neighbourhoods will
#' never be merged with opposite signs.
#'
#' Using a one vs. all approach, each aggregated group of cells is compared to all others
#' using the single-cell log normalized gene expression with a GLM
#' (for details see \code{\link[limma]{limma-package}}), or the single-cell counts using a
#' negative binomial GLM (for details see \code{\link[edgeR]{edgeR-package}}). When using
#' the latter it is recommended to set \code{gene.offset=TRUE} as this behaviour adjusts
#' the model offsets by the number of detected genes in each cell.
#'
#'
#' @return A \code{data.frame} of DGE results containing a log fold change and adjusted
#' p-value for each aggregated group of neighbourhoods. If \code{return.groups} then
#' the return value is a list with the slots \code{groups} and \code{dge} containing the
#' aggregated neighbourhood groups per single-cell and marker gene results, respectively.
#'
#' \emph{Warning}: If all neighbourhoods are grouped together, then it is impossible to
#' run \code{findNhoodMarkers}. In this (hopefully rare) instance, this function will return
#' a warning and return \code{NULL}.
#'
#' @author Mike Morgan & Emma Dann
#'
#' @examples
#' library(SingleCellExperiment)
#' ux.1 <- matrix(rpois(12000, 5), ncol=400)
#' ux.2 <- matrix(rpois(12000, 4), ncol=400)
#' ux <- rbind(ux.1, ux.2)
#' vx <- log2(ux + 1)
#' pca <- prcomp(t(vx))
#'
#' sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
#'                             reducedDims=SimpleList(PCA=pca$x))
#' colnames(sce) <- paste0("Cell", seq_len(ncol(sce)))
#' milo <- Milo(sce)
#' milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
#' milo <- makeNhoods(milo, k=20, d=10, prop=0.3)
#' milo <- calcNhoodDistance(milo, d=10)
#'
#' cond <- rep("A", ncol(milo))
#' cond.a <- sample(seq_len(ncol(milo)), size=floor(ncol(milo)*0.25))
#' cond.b <- setdiff(seq_len(ncol(milo)), cond.a)
#' cond[cond.b] <- "B"
#' meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 132), rep("R2", 132), rep("R3", 136)))
#' meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
#' milo <- countCells(milo, meta.data=meta.df, samples="SampID")
#'
#' test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate"=rep(c("R1", "R2", "R3"), 2))
#' test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
#' rownames(test.meta) <- test.meta$Sample
#' da.res <- testNhoods(milo, design=~0 + Condition, design.df=test.meta[colnames(nhoodCounts(milo)), ])
#'
#' nhood.dge <- findNhoodMarkers(milo, da.res, overlap=1, compute.new=TRUE)
#' nhood.dge
#'
#' @name findNhoodMarkers
NULL


#' @export
#' @importFrom stats model.matrix as.formula
#' @importFrom Matrix colSums
findNhoodMarkers <- function(x, da.res, da.fdr=0.1, assay="logcounts",
                             aggregate.samples=FALSE, sample_col=NULL,
                             overlap=1, lfc.threshold=NULL, merge.discord=FALSE,
                             subset.row=NULL, gene.offset=TRUE,
                             return.groups=FALSE, subset.nhoods=NULL,
                             na.function="na.pass", compute.new=FALSE){

    warning("This method will be deprecated soon. Please use groupNhoods and findNhoodMarkers")

    if(!is(x, "Milo")){
        stop("Unrecognised input type - must be of class Milo")
    } else if(any(!assay %in% assayNames(x))){
        stop("Unrecognised assay slot: ", assay)
    }

    if(is.null(na.function)){
        warning("NULL passed to na.function, using na.pass")
        na.func <- get("na.pass")
    } else{
        tryCatch({
            na.func <- get(na.function)
        }, warning=function(warn){
            warning(warn)
        }, error=function(err){
            stop("NA function ", na.function, " not recognised")
        }, finally={
        })
    }

    if (isTRUE(aggregate.samples) & is.null(sample_col)) {
        stop("if aggregate.samples is TRUE, the column storing sample information must be specified by setting 'sample_col'")
    }

    n.da <- sum(na.func(da.res$SpatialFDR < da.fdr))
    if(!is.na(n.da) & n.da == 0){
        stop("No DA neighbourhoods found")
    }

    if(isTRUE(any(is.na(da.res$SpatialFDR)))){
        warning("NA values found in SpatialFDR vector - setting to 1")
        da.res$SpatialFDR[is.na(da.res$SpatialFDR)] <- 1
    }

    message("Found ", n.da, " DA neighbourhoods at FDR ", da.fdr*100, "%")

    if((ncol(nhoodAdjacency(x)) == ncol(nhoods(x))) & isFALSE(compute.new)){
        message("nhoodAdjacency found - using for nhood grouping")
        nhs.da.gr <- .group_nhoods_from_adjacency(nhoods(x),
                                                  nhood.adj=nhoodAdjacency(x),
                                                  da.res=da.res,
                                                  is.da=da.res$SpatialFDR < da.fdr,
                                                  merge.discord=merge.discord,
                                                  max.lfc.delta=lfc.threshold,
                                                  overlap=overlap,
                                                  subset.nhoods=subset.nhoods)
    } else{
        message("Computing nhood adjacency")
        nhs.da.gr <- .group_nhoods_by_overlap(nhoods(x),
                                              da.res=da.res,
                                              is.da=da.res$SpatialFDR < da.fdr,
                                              merge.discord=merge.discord,
                                              max.lfc.delta=lfc.threshold,
                                              overlap=overlap,
                                              cells=seq_len(ncol(x)),
                                              subset.nhoods=subset.nhoods) # returns a vector group values for each nhood
    }

    nhood.gr <- unique(nhs.da.gr)
    # perform DGE _within_ each group of cells using the input design matrix
    message("Nhoods aggregated into ", length(nhood.gr), " groups")

    fake.meta <- data.frame("CellID"=colnames(x), "Nhood.Group"=rep(NA, ncol(x)))
    rownames(fake.meta) <- fake.meta$CellID

    # do we want to allow cells to be members of multiple groups? This will create
    # chaos for the LM as there will be a dependency structure comparing 2 different
    # groups that contain overlapping cells.
    # this approach means that the latter group takes precedent.
    # maybe exclude the cells that fall into separate groups?

    for(i in seq_along(nhood.gr)){
        nhood.x <- names(which(nhs.da.gr == nhood.gr[i]))

        # get the nhoods
        nhs <- nhoods(x)
        if(!is.null(subset.nhoods)){
            nhs <- nhs[,subset.nhoods]
        }

        nhood.gr.cells <- rowSums(nhs[, nhood.x, drop=FALSE]) > 0
        ## set group to NA if a cell was already assigned to a group
        fake.meta[nhood.gr.cells,"Nhood.Group"] <- ifelse(is.na(fake.meta[nhood.gr.cells,"Nhood.Group"]), nhood.gr[i], NA)
        #
        # if(!any(is.na(fake.meta[unlist(nhs[,nhood.x]),]$Nhood.Group))){
        #     fake.meta[unlist(nhs[,nhood.x]),]$Nhood.Group[!is.na(fake.meta[unlist(nhs[nhood.x]),]$Nhood.Group)] <- NA
        #     } else{
        #         fake.meta[unlist(nhs[nhood.x]),]$Nhood.Group <- nhood.gr[i]
        #     }
    }

    # only compare against the other DA neighbourhoods
    x <- x[, !is.na(fake.meta$Nhood.Group)]
    fake.meta <- fake.meta[!is.na(fake.meta$Nhood.Group), ]

    if(!is.null(subset.row)){
        x <- x[subset.row, , drop=FALSE]
    }

    exprs <- assay(x, assay)

    marker.list <- list()
    i.contrast <- c("TestTest - TestRef") # always use contrasts for this

    # if there is only 1 group, then need to make sure that all neighbourhoods
    # are not in this group - otherwise can't do any DGE testing
    if(length(nhood.gr) == 1){
        if(sum(fake.meta$Nhood.Group == nhood.gr[1]) == nrow(fake.meta)){
            warning("All graph neighbourhoods are in the same group - cannot perform DGE testing. Returning NULL")
            return(NULL)
        }
    }

    if (isTRUE(return.groups)) {
        group.meta <- fake.meta
    }


    ## Aggregate expression by sample
    # To avoid treating cells as independent replicates
    if (isTRUE(aggregate.samples)) {
        fake.meta[,"sample_id"] <- colData(x)[[sample_col]]
        fake.meta[,'sample_group'] <- paste(fake.meta[,"sample_id"], fake.meta[,"Nhood.Group"], sep="_")

        sample_gr_mat <- matrix(0, nrow=nrow(fake.meta), ncol=length(unique(fake.meta$sample_group)))
        colnames(sample_gr_mat) <- unique(fake.meta$sample_group)
        rownames(sample_gr_mat) <- rownames(fake.meta)

        for (s in colnames(sample_gr_mat)) {
            sample_gr_mat[which(fake.meta$sample_group == s),s] <- 1
        }

        ## Summarise expression by sample
        exprs_smp <- matrix(0, nrow=nrow(exprs), ncol=ncol(sample_gr_mat))
        if (assay=='counts') {
            summFunc <- rowSums
        } else {
            summFunc <- rowMeans
        }

        for (i in seq_len(ncol(sample_gr_mat))){
            if (sum(sample_gr_mat[,i]) > 1) {
                exprs_smp[,i] <- summFunc(exprs[,which(sample_gr_mat[,i] > 0)])
            } else {
                exprs_smp[,i] <- exprs[,which(sample_gr_mat[,i] > 0)]
            }
        }
        rownames(exprs_smp) <- rownames(exprs)
        colnames(exprs_smp) <- colnames(sample_gr_mat)

        smp_meta <- unique(fake.meta[,c("sample_group","Nhood.Group")])
        rownames(smp_meta) <- smp_meta[,"sample_group"]

        fake.meta <- smp_meta
        exprs <- exprs_smp
    }


    for(i in seq_along(nhood.gr)){
        i.meta <- fake.meta
        i.meta$Test <- "Ref"
        i.meta$Test[fake.meta$Nhood.Group == nhood.gr[i]] <- "Test"

        if(ncol(exprs) > 1 & nrow(i.meta) > 1){
            i.design <- as.formula(" ~ 0 + Test")
            i.model <- model.matrix(i.design, data=i.meta)
            rownames(i.model) <- rownames(i.meta)
        }


        if(assay == "logcounts"){
            i.res <- .perform_lognormal_dge(exprs, i.model, model.contrasts=i.contrast,
                                            gene.offset=gene.offset)
        } else if(assay == "counts"){
            i.res <- .perform_counts_dge(exprs, i.model, model.contrasts=i.contrast,
                                         gene.offset=gene.offset)
            colnames(i.res)[ncol(i.res)] <- "adj.P.Val"
        } else{
            warning("Assay type is not counts or logcounts - assuming (log)-normal distribution. Use these results at your peril")
            i.res <- .perform_lognormal_dge(exprs, i.model,
                                            model.contrasts=i.contrast,
                                            gene.offset=gene.offset)
        }

        i.res$adj.P.Val[is.na(i.res$adj.P.Val)] <- 1
        i.res$logFC[is.infinite(i.res$logFC)] <- 0

        i.res <- i.res[, c("logFC", "adj.P.Val")]
        colnames(i.res) <- paste(colnames(i.res), nhood.gr[i], sep="_")
        marker.list[[paste0(nhood.gr[i])]] <- i.res

    }

    marker.df <- do.call(cbind.data.frame, marker.list)
    colnames(marker.df) <- gsub(colnames(marker.df), pattern="^[0-9]+\\.", replacement="")
    marker.df$GeneID <- rownames(i.res)

    if(isTRUE(return.groups)){
        out.list <- list("groups"=group.meta, "dge"=marker.df)
        return(out.list)
    }else{
        return(marker.df)
    }
}
MarioniLab/miloR documentation built on Oct. 18, 2024, 6:04 p.m.